'Y

1, !

.

NASA
. /N3

ANALYSIS OF SHELL-TYPE STRUCTURES SUBJECTED 28064 ‘7?‘ X
TO TIME.DEPENDENT MECHANICAL AND THERMAL LOADING —

Final Report ~

— A

Submitted to JH
NASA-Lewis Research Qi j .

By

G. J. Simitses

School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, Georgia

March 1990 - NASA Grant NAG 3-534

ABSTRACT
This report deals with the development of a general mathematical model and solution
methodologies for analyzing structural response of thin, metallic shell-like structures under
dynamic and/or static thermomechanical loads, ‘In the mathematical model, geometric as well as
material-type of nonlinearities are considered. Traditional as well as novel approaches are reported
and detailed applications are presented in the appendices. The emphasis for the mathematical
model, the related solution schemes, and the applications, is on thermal viscoelastic and

viscopldstic phenomena, which can predict creep and ratchetting.

1. INTRODUCTION

The prediction of inelastic behavior of metallic materials at elevated temperatures has
increased in importance in recent years. The operating conditions within the hot section of a rocket
motor or a modern gas turbine engine present an extremely harsh thermo-mechanical environment.
Large thermal transients are induced each time the engine is started or shut down. Additional

thermal transients from an elevated ambient occur, whenever the engine power level is adjusted to
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meet flight requirements. The structural elements employed to construct such hot sections, as well
as any engine component located therein, must be capable of withstanding such extreme
conditions. Failure of a component would, due to the critical nature of the hot sectibn, lead to an
immediate and catastrophic loss in power and thus cannot be tolerated. Consequently, assuring
satisfactory long term performance for such components is a major concern for the designer.
Traditionally, this requirement for long term durability has been a more significant concern
for gas turbine engines rather than rocket motors. However, with the advent of reusable space
vehicles, such as the Space Shuttic, the requirement to accurately predict future performance

following repeated elevated temperature operations must now be extended to include the more

_extreme rocket motor application. These blades operate in severe thermal transients that result in

large inelastic strains, and several types of behavior must be considered.The elevated temperatures
can lead to thermal buckling and, in addition, creep can be expected to occur. Thus, a combination
of thermal-creep buckling behavior leading to large deflections can be anticipated. Because of the
cyclic character of the mechanical and thermal loads, progressive growth or ratchetting effects must
also be considered. Thus, geometric and material nonlinearities (of high orders) can be anticipated
and must be considered in the mathematical model.

Consequently, the industry is concerned with the behavior of thin shell-like structural
elements subjected to severe time-dependent thermomechanical loading. Such thin elements,
including beams, rings, arches, plates and shells, are presenting generic types of components,
which might be located within or adjacent to the hot section of a rocket or a gas turbine engine.

The experience in the gas turbine engine industry indicates, however, that existing analytic
tools are not sufficiently reliable to accomplish this task. State of the art methods for predicting hot
section component behavior are generally not sufficiently accurate to perform extended use
evaluations.

Under this kind of severe loading conditions, the structural behavior is highly

nonlinear due to the combined action of geometrical and physical nonlinearities. On one side, finite
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deformation in a stressed structure introduces nonlinear geometric effects. On the other side,
physical nonlinearities arise even in small strain regimes, whereby inelastic phenomena play a
particularly important role. From a theoretical standpoint, nonlinear constitutive equati-ons should
be applied only in connection with nonlinear transformation measures (implying both deformation
and rotations). However, in almost all of the works in this area, the two identified sources of
nonlinearities are always separated. This separation yields, at one end of the spectrum, problems
of large kinematics, while at the other end, problems of viscous and/or non-isothermal behavior in
the presence of small strain.

Because of the nature of the causes, special care is needed in the selection or development
of a constitutive law that includes time and temperature effects. Although there exists a sizeable
body of literature on phenomenological constitutive equations for the rate- and temperature-
dependent plastic deformation of metallic materials, to date rational and thermodynamically
consistent elastic-thermovisconlastic constitutive relations capable of incorporating the effects of
large strains and rotations have not been demonstrated.

Constitutive models for small strain in engineering literature may generally be grouped into
three categories: classical plasticity, nonlinear visoelasticity, and theories based on microstructural
phenomena. Each group can be further separated into "unified” and "uncoupled” theories, where
the two differ in their approach to the treatment of rate-independent and rate-dependent inelastic
deformation. The uncoupled theories decompose the inelastic strain rate into a time-independent
plastic strain rate and a time-dependent creep rate with independent constitutive relations describing
plastic and creep behavior. Such uncoupling of the strain components provides for simpler
theories to be developed but precludes any creep-plasticity interaction. Recognizing that cyclic
plasticity, creep and recovery are not independent phenomena but rather are very interdependent, a
number of "unified" models for inherently time-dependent nonelastic deformation have been

developed recently.
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Classical incremental plasticity theories are macrophenomenological because they base the
derivation of state variables purely on experimental results without direct reference to the
microstructure of the material. Most incremental plasticity theories have four major components:
(1) stress-elastic strain relations, (2) a yield function describing the onset of plastic deformation,
(3) a hardening rule which prescribes the strain-hardening of the material and the modification of
the yield surface during plastic flow, and (4) a flow rule which defines the components of straiﬁ
that are plastic or nonrecoverable.

Research in this area is voluminous. For example, Zienkiewicz and Cormeau [1]
developed a rate-dependent unified theory which allows for nonassociative plasticity and strain
softening, but does not model the Bauschinger effect or temperature dependence. Extensions of
classical plasticity to model both rate and temperature effects were presented recently by Allen and
Haisler [2], Haisler and Cronenworth 3], and Yamada and Sakurai [4].

In the nonlinear viscoelastic approach, the constitutive relation is expressed as a single
integral or convoluted form. This type of constitutive model employs the thermodynamic laws
along with physical constraints to complete the formulation. A detailed review of several existing
theories is presented by Walker [5]. Walker's [5] theory is based on a unified viscoplastic integral
developed by modifying the constitutive relations for a linear three parameter viscoelastic solid.
The theory contains clearly defined material parameters, a rate-dependent equilibrium stress, and a
proposed multiaxial model. An important shortcoming of Walker's theory is its failure to model
transient temperature conditions. Many other nonlinear viscoelastic theories have been proposed
including those by Cernocky and Krempl [6], Valanis [7], and Chabache(8].

The microphenomenological theories attempt to represent the response of polycrystalline
materials in terms of various micromechanisms of deformation and failure. Various dislocation
theories have been developed to predict plastic deformation in terms of dislocation interaction, slip,
glide, density, etc. Most of the material models developed, to date, depend primarily on the

number of state variables used and their growth or evolutionary laws. Many of the recent "unified'
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microphenomenological theories have been discussed and evaluated by Walker [9] and Chan etal.
[10].

One example of a microphysically based constitutive law is an elastic-viscoplastic theory
based on two internal state variables as proposed by Bodner, et al. [11]. These authors,
demonstrate the ability of the constitutive equations to represent the principal features of cyclic
loading behavior including softening upon stress reversal, cyclic hardening or softening, cyclic
saturation, cyclic relaxation, and cyclic creep. One limitation of the formulation though is that the
computed stress-strain curves are independent of the strain amplitude and therefore too “flat” or
"square".

Miller [12] has reported research on the modeling of cyclic plasticity with "unified"
constitutive equations. He also recognizes the shortcomings of many theories in predicting
hysteresis loops, which are oversquare in comparison to observed experimental behavior.
Improvement is accomplished by making the kinematic work-hardening coefficient depend on the
back stress and the sign of the nonelastic strain term. Theories that are similar in format to Miller's
have been proposed by Krieg,rswearengen and Rhode [13] and by Hart [14]. The models use two
internal state variables to reflect current microstructure state and are based upon models for
dislocation processes in pure metals. All these constitutive theories were formulated without the
use of a yield criterion. Since these models do not contain a completely elastic regime, the function
that describes the inelastic strain rate should be such that the inelastic strain rate is very small for
low stress levels. Theories with a yield function and a full elastic regime have been developed for
the case of isotropic and directional hardening by Lee and Zavrel [15].

As previously noted, the quantities utilized in the small strain theory of viscoplasticity
(stress, strain,'stress rate, and strain rate) are defined only within the assumption of "small strain”,
but this is always left unstated. Whether or not the strains for a given case are "small" cannot be
determined a priori by geometric considerations. In general, one cannot know in advance whether

for a given loading of a material the "small strain" assumption (always left undefined) will hold or
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not. The question of whether the sm;ﬂl-strain approximations are valid is always avoided in the
"small strain” literature. Furthermore, as Hill [16] points out, the really typical plastic problems
involve changes in geometry that cannot be disrcgarded-. In many cases, for example, it is
sufficient to take into account finite plastic strains and small elastic strains or vice versa. From the
theoretical viewpoint it is desirable in all cases to have a theory which intrinsically allows for both
the elastic and plastic strains to be large. Such a theory of course, must reduce to the earlier
mentioned special cases, as limiting cases. Furthermore, such theories provide a check for those
which are obtained by generalizing small strain theories.

The mathematical theories of deformation and flow of matter deal essentially with the gross
properties of a medium. Heat and mechanical work are considered as additional causes for a
change of the state of the medium. The resulting phenomena in any particular material are not
unrelated. Therefore, a thermodynamical treatment of the foundation of the theory of flow and
deformation is appropriate, and indeed the obvious approach. Two very different main approaches
to a thermodynamic theory of a continuum can be identified. These differ from each other in ‘the
fundamental postulates upon which the theories are based. An essential controversy can be traced
through the whole discussion of the thermodynamic aspects of continuum mechanics. None of
these approaches is concerned with the atomié structure of the material. They, therefore, represent
purely phenomenological approximations. Both theories are characterized by the same
fundamental requirement that the results should be obtained without having recourse to statical or
kinetic methods.

Within each of these approaches there are two distinct methods of describing history and
dissipative effects: the functional theory [18], in which all dependent variables are assumed to
depend on the entire history of the independent variables, and the internal variable approach [19],
wherein history dependence is postulated to appear implicitly in a set of internal variables. For

experimental as well as analytical reasons[20, 21] the use of internal variables in modeling inelastic
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solids is gaining widespread usage, in current research. The main differences among the various
modern theories lie in the choice of these internal variables.

The predictive value of an elastic- viscoplastic material model for non-isothermal, large
deformation analyses depends therefore on three basic elements:

a) the nonlinear kinematic description of the elastic-plastic deformation.
b) termodynamic considerations, and
¢) the choice of external and internal thermodynamic variables as well as on their interactions.

The problem of viscoplastic deformations in shells has been treated at several levels of
approximation and generality.

The simplest approaches (see [22])are based on the assumption of infinitesimal
displacement gradients (which implies infinitesmal strains) and a material model of stationary
creep, sometimes with an approximate inclusion of primary creep.

A more general analysis utilizes shell kinematics for moderately large displacement
gradients (at least some of them), infinitesimal strains, and material models of stationary or simple
non-stationary creep (see [22]). This type of assumption is capable of solving problems of creep
buckling [23], and it does reproduce the sometimes stiffening effect of the interaction between the
normal forces and the normal deflection. Extension of this kind of formulation with a viscoplastic
material model is presented in [24-26]. The use of numerical methods [27] makes possible the
solution for many non-trivial types of structures.

The problems of large strains, which arise in the analysis of large creep or thermal
deformation of shells, have not been treated at all in a general manner. Recognizing that finite
strain effects are present in these problems, reliable prediction demands that such effects be
included rationally and properly in the analysis. In addition to the necessary basic kinematical and
dynamical equations of the shell theory, such an analysis must incorporate a correctly invariant

formulation of the material equations and requires an evaluation of the strain-rate tensors through
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the thickness of the shell. Such an analysis cannot be found in explicit form, at least in the readily
accessible engineering literature. »

Several authors have developed mathematical description of the kinematics of the three
dimensional deformation of elastic or viscoelastoplastic materials (28, 29]. Howéver, it is not
clear how to best select the reference space and configuration for the stress tensor, bearing in mind
the rheologies of realistic materials. Although an intrinsic relation, which satisfies material
objectivity can be used [30, 31], the choice is not unique (see for example [29], [32], [33]) .

For shell-like structures, failure may be caused by buckling. Thus, stability can be a
primary consideration in the structure design. In a high temperature environment, there will be
much more concern on this issue, because the inelastic deformation may lead to a geometrical
imperfection which, in turn, may further decrease the load carrying capability. Therefore, stability
of shell-like structures can become the main concemn for designers, and buckling and postbuckling
behavior of shell-like structures (see [34]) must be studied. |

In the analysis of shell-like structures, it is worthwhile to note that Donnell [35] and
Sahdcrs [36] made great contributions in the formulation of nonlinear shell theories. Many
applications are based on their formulation and simplifications.

For a long time, the research efforts have been put into the subject on how to improve the
discrepancy between the theoretical and experimental results.  The present trend in buckling and
postbuckling analyses is to relax several of the assumptions in classical theories and employ
nonlinear kinematic and constitutive relations.

As the complexity of shell-like structures increases and as the computational capability
improves, numerical methods play a major role in predicting buckling and in enhancing our
understanding of postbuckling response.

The finite element analysis for shell structures has been the subject of interest for many
years. There have been many published works in this field. Most of them deal with elastic-plastic

material behavior. Some of them also deal with geometric nonlinearity and postbuckling behavior.
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Ahmad, Irons and Zienkiewicz [37] first proposed the 'degenerated’ three dimensional
isotrbpic element which can be used in the linear analysis of thin shells. The basic assumption
used in [37] is that the normal will remain normal to the deflected midsurface, straight and
inextensional after deformation. With this assumption, the displacement field in the shell can be
expressed in terms of five degrees of freedom (three translations and two rotations) of the nodes
which are located in the middle surface.

The 'degenerated' 3-D element was extended to the geometrically nonlinear analysis of
shells by Ramm [38]. He used both quadratic and cubic interpolation functions in his work. The
development is based on total Lagrangian formulation.

Bolouchi [39] developed various shell elements with 8-16 nodes. His work is based on
both total Lagrangian and updated Lagrangian formulations.

At the same time, finite element analysis has been adopted to the area of nonlinear
continuum mechanics. It made it possible to obtain solutions to a large class of nonlinear problems
with acceptable accuracy.

J.T. Oden [40, 41] extended the elastic theory of finite elements to the hyper-elastic and
visco-elastic field.

In 1968, H.D. Hibbitt, D.V. Marcal and J.R. Rice [42] first introduced hypo-elastic
formulation into the finite element analysis. They adopted the incremental theory based on a
Lagrangian reference frame and their formulation is suitable for large strain and large displacement
response. In their work, they used a linear relation between the Jaumann stress increments and
increments of the deformation tensor which are invariant with respect to rigid body rotation. The
formulation for small strain and large rotation approximation is also proposed in their work.

Needleman [43] derived similar finite element equations from variational principles given
by Hill [44]. The work is also based on the Lagrangian formulation.

The Eulerian formulation which is based on the current configuration has been used by

Yaghmai and Popov [45]. They derived the equations by means of variational principles and
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solved some elastic and elastic-plastic problems. Similar work was done by Gunasekera and
Alexander [46]. They gave their equations for Prandtl-Reuss plastic materials and derived the
equations from the principle of virtual work. v

In 1974, R.M. McMeeking and J.R. Rice [47] introduced Eulerian finite element
formulation for large elastic-plastic flow, which is parallel to the treatment of [42]. The method is
based on Hill's variational principle for incremental deformations. It is ideally suited for
isotropically hardening Prandtl-Reuss materials.

T.Y. Chang and K. Sawamiphakdi [38] adopted the hypoelastic theory to the degenerated 3-
D isoparametric element for laminated anisotropic shells. The nonlinear geometric stiffness matrix
which is based on Lagrangian description was developed and some example problems were
presented. |

Generally, the Newton-Raphson integration method is used to achieve the correct
equilibrium positions in the nonlinear finite element computations. However, it is no longer
appropriate to use it in establishing post buckling response. The reason is that the stiffness matrix
tends to be singular resulting in an increasing number of iterations. Finally, the result will diverge
at the critical point. In order to overcome these problems and to trace the response beyond the
critical point, several efficient methods have been developed [48, 49].

Bergan [50] introduced the 'current’ stiffness parameter’ to guide the equilibrium
iterations. When the parameter reaches the prescribed value, the execution of iterations stops. At
that time, the displacement continues to increase until a new parameter value is reached. This
means that the iterations are suppressed near the critical point. The algorithm of this method is
simple and the program is easy to develop from the Newton-Raphson method. The drawback is
that the load step in the neighborhood of the critical point need still be small.

Argyris [52] and several other researchers introduced the displacement control method. In
this scheme, a single displacement component is selected as a control parameter and the

corresponding load level is considered to be unknown. In the initial paper, the symmetry of the
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stiffness matrix is démagcd. The method, then, was improvedias a two step method [52, 53], in
order to preserve the symmetry of the stiffness matrix. The displacement control method is
relatively widely used since it is both efficient and easy to control. The limitation of thi-s method is
that it will fail whenever the structure snaps back from one load level to a lower one.

Riks [54, 55], and Wempner [56] independently introduced the constant-arc-length
method. The load increment in this method is confined by the equation of arc length. The
increments of load and displacement vector are mixed. The final equilibrium position is located by
continuing drawing a normal plane to the new tangent of the load-displacement curve. Generally
speaking, this method is efficient in the entire load range and can be applied to all possible
nonlinear structural responses.

Crisfield [57, 58] further modified Riks' method. He introduced line searches into the
constant-arc-length algorithm. In addition, he developed a scheme in which a single parameter is
employed to accelerate the speed of convergence using the line search concept. His work makes

Riks' method more efficient and also much easier for programming.

2. SUMMARY OF WORK

The progress made and the work performed have been elabofated upon in an interim
scientific report submitted to the sponsor in late 1986, and in a series of semiannual progress
reports. The most recent of these is dated October 1989.
2.1 Traditional Approach

Following a traditional approach, a method was developed for bounding the response of
problems of viscoelastic material behavior, based on nonlinear kinematic behavior. Upper and
lower bounds are established through bounding of the convolution integral of the governing
nonlinear Volterra-type integral equation. Details of the method can be found in the first paper of

Appendix A.
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Next, a differential (as opposed to integral) methodology for solution of one-dimensional,
kinematically nonlinear, visoelastic problems was developed. Using the example of an
eccentrically loaded cantilever beam-column, the results from the differential formulation were
compared to the results obtained from the integral solution technique. The details of this are
found in the second paper of Appendix A. This paper also includes a discussion of the various
factors affecting the numerical accuracy and rate of convergence of the two procedures..
Moreover, the influences of some "higher order" effects, such as straining along the centroidal
axis, are also discussed.

Finally, an analytic study of beams and arches subjected to significant thermal cycling from
ambient temperatures up to 800°C is presented. In this study, Walker's [9] unified nonlinear
hereditary type of viscoelastoplastic constitutive law is employed to characterize the time-and
temperature-dependent properties of a typical aerospace alloy, Hastelloy X.

The details are given in the third paper of Appendix A. A shorter version of this paper was
published in the ASME Joumnal of Engineering Materials and Technology (January 1990 issue).
The PVP-Vol. 153 version is made part of this report, because it contains more detail.

2.2 Novel Approach

A complete true ab-initio rate theory of kinematics and kinetics for continuum and curved
thin structures, without any restriction on the magnitude of the strains or the deformation, was
formulated. The time depehdence and large strain behavior are incorporated throu gh the
introduction of the time rate of the metric and curvature in two coordinate system; a fixed (spatial)
one and a convected (material) coordinate system. The relations between the time derivative and
the covariant derivatives (gradients) have been developed for curved space and motion, so that the
velocity components supply the connection between the equations of motion and the time rate of
change of the metric and curvature tensors.

The metric tensor (time rate of change) in the convected material coordinate system is

linearly decomposed into elastic and plastic parts. In this formulation, a yield function is assumed,
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which is dependent on the rate of change of stress, metric, temperature, and a set of internal
variables. Moreover, a hypoelastic law was chosen to describe the thermoelastic part of the
deformation.

A time and temperature dependent viscoplastic model was formulated in this convected
material system to account for finite strains and rotations. The history and temperature dependence
were incorporated through the introduction of internal variables. The choice of these variables, as
well as their evolution, was motivated by phenomenological thermodynamic considerations.

The nonisothermal elastic-viscoplastic deformation process was described completely by
"thermodynamic state" equations. Most investigators (in the area of viscoplasticity) employ plastic
strains as state variables. Our study shows that, in general, use of plastic strains as state variables
may lead to inconsistencies with regard to thermodynamic considerations. Furthermore, the
approach and formulation employed by all previous investigators lead to the condition that all
plastic work is completely dissipated. This, however, is in contradiction with expérimental
evidence, from which it emerges that part of the plastic work is used for producing residual
stresses in the lattice, which; when phenomenologically considered, causes hardening. Both
limitations are not present in our deformation, because of the inclusion of the "thermodynamic
state" equations.

The obtained complete rate field equations consist of the principles of the rate of the virtual
power and the rate of conservation of energy, of the constitutive relations, and of boundary and
initial conditions. These formulations provide a sound basis for the formulation of the adopted
finite element solution procedures.

The derived shell theory, in the least restricted form, before any simplifying assumptions
are imposed, has the following desirable features:

(a) The two-dimensional, impulse-integral form of the equations of motion and the Second

Law of Thermodynamics (Clausius-Duhem inequality) for a shell follow naturally and

exactly from their three-dimensional counterparts.
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(b) Unique and concrete deﬁnitiohs of shell variables such as stress resultants and couples, rate
of deformation, spin and entropy resultants can be obtained in terms of weighted integrals
of the three-dimensional quantities through the thiclc;lcss.

(c) There are no series expansions in the thickness direction.

(d)  There is.no need for making use of the Kirchhoff Hypotheses in the kinematics.

(e) All approximations can be postponed until the descretization process of the integral forms
of the First Law of Thermodynamics.

§9) A by-product of the descent from three-dimensional theory is that the two-dimensional
temperature field (that emerges) is not a through-the-thickness average, but a true point by
point distribution. This is contrary to what one finds in the literature concerning thermal
stresses in the shell.

To develop geometrically nonlinear, doubly curved finite shell elements the basic equations
of nonlinear shell theories have to be transferred into the finite element model. As these equations
in general are written in tensor notation, their implementation into the finite element matrix
formulation requires considerable effort.

The nonlinear element matrices are directly derived from the incrementally formulated
nonlinear shell equations, by using a tensor;or'iented procedure. The classical thin shell theory
based on the Kirchoff-Love hypotheses (Formulation D) was employed for this purpose. For this
formulation, we are using the "natural” degrees of freedom per midsurface shell node: three
incremental velocities and the rates of rotation about the material coordinates in a mixed form.

The quasi-linear nature of the principle of the rate of virtual power suggests the adoption of
an incremental approach to numerical integration with respect to time. The availability of the field
formulation provides assurance of the completeness of the incremental equations and allows the
use of any convenient procedure for spatial integration over the domain V. In the present instance,

the choice has been made in favor of a simple first order expansion in time for the construction of
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incremental solutions from the results of finite element spatial integration of the governing
equations.

The procedure employed permits the rates of the field formulation to be interpreted as
increments in the numerical solution. This is particularly convenient for the construction of
incremental boundary condition histories.

Even under the condition of static external loads and slowly growing creep effects, the
presence of snap-through buckling makes the inertia effects significant. In dynamic analyses, the
applied body forces include inertia forces. Assuming that the mass of the body considered is
preserved, the mass matrix can be evaluated prior to the time integration using the initial
configuration.

Finite element solution of any bouﬁdary-value problem involves the solution of the
equilibrium equations (global) together with the constitutive equations (local). Both sets of
equations are solved simultaneously in a step by step manner. The incremental form of the global
and local equations can be achieved by taking the integration over the incremental time step
t=tj+1-t;, The rectangular rule has been applied to execute the resulting time integration.

Clearly, the numerical solution involves iteration. A simplified version of the Riks-
Wempner constant-arch-length method has been utilized. This iteration procedure which is a
generalization of the displacement control method also allows to trace the nonlinear response
beyond bifurcation points. In contrast to the conventional Newton-Raphson techniques, the
iteration of the method takes place in the velocity and load rate space. The load step of the first
solution in each increment is limited by controlling the length ds of the tangent. Either the length is
kept constant in each step or it is adapted to the characteristics of the solution. In each step the
triangular-size stiffness matrix has to be checked for negative diagonal terms, indicating that a
critical point is reached.

The study is limited only to the simplest of the developed shell theory formulations

(Formulation D).
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The various shell theory approximations (formulations) are based on the use of certain
simplifying assumptions regarding the geometry and kinematics of the shell configuration.
These are:
Assumption I: The material points which are on the normal to the reference surface before
deformation will be on the same normal after deformation.
Assumption II: The shell is sufficiently thin so that we can assume linear dependence of the
position of any material point (in the deformed state) to the normal (to the reference surface)
coordinate (in the deformed state). The linear dependence can easily be changed to parabolic,
cubic, or any desired degree of approximation.
Assumption ITI: The rate of change of the velocity gradients with respect to in-plan coordinates on
the two bounding shell surfaces is negligibly small.
Assumption IV; The rate of change of the distance of a material from the reference surface is
negligibly small. |

On the basis of the above four simplifying assumptions, several formulations result, for the
anélysis of thin shells. These formulations are denoted below by capital letters.

Formulation A: This formulation makes use of Assumption I, only.

Formulation B: This formulation employs Assumptions I and II.

Formulation C: This formulation employs Assumption I, I and IIL.

Formulation D: This is the classical thin shell theory based on the Kirchoff-Love
hypotheses of Assumptions I, II, III, IV, as applied to large deformation theory.

These formulations are arranged in such a manner that we move from the least restrictive
(A) to the most restrictive (D).

In addition to this, a fifth formulation (E) can easily be devised and this formulation in
terms of order of restriction is similar to Formulation A. Formulation E makes use of Assumption

II only.
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Three papers are included as Appendix B. These papers reflect the work associated with

the novel approach and provide detail in formulation as well as in application.

3. PUBLICATIONS AND PRESENTATIONS

Several presentations and publications resulted from this project. Moreover, two Ph.D.

students were supported (one has already received the degree, the second is expected to complete

the requirements by the end of 1990), as well as one postdoctoral fellow and three faculty members

(Drs. R.L. Carlson, R. Riff and G.J. Simitses) of the Georgia Institute of Technology.

A list of the presentations and publications is given below:

3.1 Presentations

1.

(9]

"Thermodynamically Consistent Constitutive Equations for Nonisothermal, Large Strain,
Elasto-Plastic Creep Behavior,” 26th AIAA/ASME/ASCE/AHS Structures Structural
Dynamics and Materials Conference, Orlando, FL., April 14-17, 1985.

"Dynamic Creep Buckling: Analysis of Shell Structures Subjected to Time-Dependent
Mechanical and Thermal Loading,” NASA Conference on Structural Integrity and Durability
of Reusable Space Propulsion Systems, Cleveland, OH., June 4-5, 1985.

"Bounding Solutions of Geometrically Nonlinear Viscoelastic Problems," 27th Structures,
Structural Dynamics and Materials Conference, San Antonio, TX, May 4-6, 1986.

"Dynamic Analysis of Shell Structures Subjectedrto Mechanical and Thermal Loading,"
AFOSR/ARO Conference on Non-Linear Vibrations, Stability, and Dynamics of Structures
and Mechanisms, Blacksburg, VA, March 23-25, 1987.

. "Solution Methods for One-Dimensional Nonlinear Viscoelastic Problems,” 28th
AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference,
Monterey, CA, April 6-8, 1987.
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6. "Non-Isothermal Elastoviscoplastic Snap-Through and Creep Buckling of Shallow Arches,"
28th AIAA/ASME/ASCB/AHS Structures, Structural Dynamics and Materials Conference,
Monterey, CA, April 6-8, 1987. . '

7. "Creep Analysis of Beams and Arches Based on a Hereditary Visco-Elastic-Plastic Law,"
ASME Winter Annual Meeting, Chicago, IL., Nov. 28-Dec. 2, 1988.

8. "Non-Isothermal Buckling Behavior of Viscoplastic Shell Structures,” 30th
AIAA/ASME/ASCE/AHS/AS C Structures, Structural Dynamics and Materials Conference,
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- Bounding Solutions of Geometrically 260 /0 ¥6O0

Nonlinear Viscoelastic Problems

John M. Stubstad* and George J. Simitsest
Georgia Institute of Technology, Atlanta, Georgia

A method is presented for bounding solutions to problems of linear viscoelastic material behavior formulated

using nonlinear kinematic measures of deformation. Upper and lower bounds are established through bounding

g of the convolution integral of the governing nonlinear Volterra-type integral equation. A significant feature of
the manner in which these bounding solutions are generated is that time may be treated as & parameter, thereby

casting the bounding solutions into a quasielastic context. Consequently, numerical evaluation is simplified since

the necessity of continually approximating convolution integrals of the deformation history, required for exact

e solution, is eliminated. This, in turn, results in a substantial reduction in the computational effort required for
numerical evaluation. In one of the example problems considered, this reduction translates into more than a

thirtyfold difference in computer time needed for determination of the exact and bounding solutions. Applica-

tion of the bounding technique is demonstrated through two examples and includes a limited comparison with

- some recently published experimental data.
-— Nomenclature Subscripts
a =load eccentricity ge = quasielastic solution
E,,E, =elastic constants of ideal viscoelastic material ub,lb =upper and lower bounds, respectively
- g(s,u) =Green’s function for the spatial integrals
- 7 =moment of inertia
J(t) =creep compliance
z J(p} = Laplace transform of creep compliance Intrbduction
= k(t—1) = generic kernel of convolution integral .
— K(1) =integrated form of k(1—1) NTEGRAL trar_lsfor'm techmqut_:s, such as the Laplgce
L =length of beam transform, provide simple and direct methods for solving

viscoelastic problems formulated within a context of linear

£, =Laplace transform operator h M- .
M(s’,7) = bending moment at position s* and time 7 matel"lal response and using linear measures for deformaugn.
D = Laplace transform variable /_\pphc'atlon of_the trapsform operator reduces the governing
P = time-independent load h'near integrodifferential equations to a set of algebfaxc rela-
. Px = Euler load tions bct»yeen the transforms of the unknown functions, the
T R(1) = time-dependent load viscoelastic operators, and the initial and boundary condi-
— $8 = dimensional and nondimensional distance nons..Inversmn, elt_her directly or thrqugh the use of the ap-
along the beam, respectively propriate convolution theorem, provxdes the time domain
o 4L =time response, once the unknown funct!ons have been expressed in
. Xy = spatial coordinates terms of sums, prodpcts, or ratios of kn_own lransf‘orms.
- a(r) = angle of rotation of the end of the cantilever When exact inversion is not possible, approximate techniques,
column such as suggested by Schapery,' may provide accurate results.
A(7),5(r) =lateral and transverse deflection of the end of The overall problem becomes substantially more complex

"
i

the beam, respectively
= viscous coefficient of ideal viscoelastic material

when nonlinear effects must be included. We consider here
situations where a linear material constitutive law can still be

m . .
8(s,1) = generic representation of a spatial integral produ_cuve'ly employed, but whel.'e the magnitude of the
x(s’,0) = curvature at position s’ and time ¢ resulting time-dependent deformations warrants the use of a
S A =scalar parameter nonlinear kinematic analysis. The governing equations will
— u =relaxation constant of ideal viscoelastic be nonlinear integrodifferential equations for this class of
material problems. Thus, traditional as well as approximate tech-
¢(s’,r)  =angle of rotation of the cantilever at position s’ niques, such as cited above, cannot be employed since the
and time 7 transform of a nonlinear function is not explicitly expressible.
- ®(s’.p) =Laplace transform of angle of rotation Rogers and Lee? considered such a problem in an in-
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vestigation of the finite deflection of a viscoelastic cantilever
beam. Employing an analogy of an associated elastic prob-
lem, they derived a solution to the viscoelastic problem in a
form involving a time convolution of a nonlinear space and
time-dependent integral function. Numerical evaluation was
accomplished using Picard’s method of successive sub-
stitutions. Newton-Coates quadratures were employed to ap-
proximate the spatially dependent integral relationship; a
mean-value-based finite-difference formula was used for the ’
time convolution.

Solution procedures of this type are generally well suited
for computer implementation. However, they can become
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computationally inefficient when the response must be deter-
mined over an extended time period. Each increment in time
requires a reevaluation of the convolution integrals. Thus,
the entire deformation history must be retained in memory
during the calculations. Since each completed set of com-
putations adds another set of results to this history, this
generates an ever-increasing memory requirment. In addi-
tion, the total number of computations performed during
each succeeding iteration also increases.

In this regard, an approximation technique proposed by
Schapery® can provide an attractive alternative. Commonly
referred to as the quasielastic approximation, it has most
recently been employed by Vinogradov* and Vinogradov and
Wijeweera® in studies of the behavior of eccentrically loaded
viscoelastic cantilever columns.

The method is based on the observation that the solution
procedure developed by Rogers and Lee? may be interpreted
as a sequence of short-time interval quasielastic solutions.
This suggests that approximate solutions may be generated
by replacing the original viscoelastic problem by an
“sequivalent’’ time-dependent elastic one. In this replacement
problem, the elastic properties are equated to the instan-
taneous values of the relaxation moduli or creep compliances
of the viscoelastic material.

The inherent numerical advantage provided by this tech-
nique is that it eliminates the potentially inefficient calcula-
tion of convolution integrals. Thus, the speed and efficiency
at which the time-dependent response is calculated is in-
dependent of elapsed time. The obvious potential disadvan-
tage is that, since it is an approximation, significant dif-
ferences may exist between the actual response of the visco-
elastic body and those predicted quasielastically. In addition,
the quasielastic method does not provide a direct method for
assessing whether any errors incurred are conservative.

In this paper, we present an approximation technique that
provides both upper- and lower-bound predictions for the
class of viscoelastic problems under consideration. From
these bounds, one may readily deduce when the approxima-
tion provides sufficiently accurate results or when more in-
volved techniques must be used. Finally, we demonstrate
that solutions for this class of viscoelastic problems can be
accomplished within a Laplace transform context, even
though the transformed functions cannot be expresssed as
explicit functions of the transform variable.

Preliminaries

As a motivation for the development, consider an integral
equation of the form

go(x.t):)\s‘: k(t—-7)8(x,7)dr 0}

where ¢(x,7) and 8(x,7) may be scalar, vector, or tensor
functions of position vector x and time r. We shall assume
that the kernel k(7) is positive semidefinite over the range of
integration and X is some scalar parameter. In addition, we
assume that k(7), ¢(x7), 8(x7), and their first partial
derivatives with respect to 7 are continuous over the interval
0+ <r<t. Finally, we assume that eoi{x,7) and 0(x,7) are
continuous with respect to x over some closed domain D
and possess continuous first and second partial derivatives
with respect to x over at least the interior of the domain.

For the class of problems under consideration, the func-
tion 8(x,7) represents a spatial integral in which ¢(x,7) ap-
pears in the integrand in a nonlinear manner. Depending
upon the boundary conditions, #(x,7) may also include ad-
ditive nonlinear forms of ¢ (x,7). Thus, Eq. (1) may be viewed
as a Volterra-type integral equation of the second kind.

Let us assume that, even before specific solutions have
been generated, we are able to infer some information about
the general manner in which A(x.r) behaves. Suppose, for

AIAA JOURNAL

example, that 0(x,r) represents some measure of deflection
which (we deduce) must be a nondecreasing function with
respect to time. Thus, over the interval 0+ <7<, this would
imply

8(x,0*)<8(x,7)s0(x1) 2)

This suggests that if we establish the approximate solutions
I
P = So k(t—r1)0(x,0%)dr (3a)

. .
wub=)\§°k(t—1)0(x,!)d'r (3b)

where subscripts ub and b denote upper and lower bounds,
respectively, we can then define difference functions A¢y,
and Ag,, by

App=e(Xt) —9p (4a)
Aoy =Pup -‘P(x:[) (4b)

Then substitution of Egs. (1) and (3) into Eq. (4) yields
t
A%=)\So k(t=7)[8(x,7) —8(x,0")]dr (5a)
t
A'Pub=)\50k(f-7)[0(x.l)—B(X.T)ldr (5b)

As a direct consequence of Eq. (2), the quantities enclosed
by square brackets in Eqs. (5) must be positive semidefinite
for all values of time 7. Because both 9(x,0*) and 8(x,¢) are ~
constant with respect to r, the square bracket terms must be
continuous in 7 since, by prior assumption, 8(x,r) is con-
tinuous in 7. Thus, for a continuous and positive semdefinite
kernel, the integrand is continuous and positive semidefinite
over the entire range of integration. Consequently, for
positive A, the differences Ay, and Ayp,, must be positive
for all time. Therefore, the approximate solution ¢,, must
represent an upper bound for the exact solution. Similarly,
@, must inherently bound the exact solution from below.

The numerical advantages provided by working with the
bounding functions are easily demonstrated. Letting

K(r)=)\5‘: k(t—r)dr 6)

and noting that §(x,0*) and 8(x,t) are independent of rim-
ply that Eqgs. (3) have the form

e =K()8(x,0%) (7a)

and
eun =K (1)8(x,1) (7b)

Thus, the time convolution of the exact solution [Eq. (1)]
has, in the bounding formulation, been replaced by a format
in which time appears only as a parameter. Consequently,
numerical solution of Egs. (7) requires integration only over
the spatial coordinates, whereas the exact solution requires
both spatial and temporal integrations.

The preceding development was based upon the assump-
tion that 8(x,7) was a nondecreasing function with respect to
time. The technique is easily adapted to cases where 8(x,7) is
a nonincreasing function. Thus, if

8(x,0*)=28(x,7)28(x, ) (8
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we can replace Egs. (3) with

¢,b=kj‘;k(t—‘r)0(x,t)d‘r (93)
and

w,b=)\5; k(t—7)0(x,0*)dr (5b)

Thereafter, proceeding as before generates the desired
bounding behavior. In a similar manner, a simple series of
modifications to the definitions of the bounding functions
are needed when A is a negative rather than positive scalar.

Applications of the bounding technique, including com-
parisons with exact solutions, are provided in the following
sections.

Applications

End-Loaded Cantilever Beam

As noted earlier, Rogers and Lee? developed the first, and
a numerically exact, solution for the problem of an end-
loaded linearly viscoelastic cantilever beam. The solution, in
the general form of Eq. (1), was evaluated by employing
Newton-Coates quadratures for the spatially dependent in-
tegral function 6(x,7) and a mean value based finite-

difference formula for the convolution with k(f—7). Several

years later, Schapery,? in a paper describing the quasielastic
method, presented an approximate solution for this problem.
Since this approximate solution was in the form of Eqgs. (7),
Schapery was able to generate numerical results directly from
the elastic analysis presented in Ref. 2. Thus, his solution re-
quired only numerical evaluation of a spatially dependent in-
tegral equation with time treated as a parameter.

Here, we analyze the same problem using the bounding
procedure. It is demonstrated that Schapery’s approximate
solution is, in fact, a lower-bound solution for a suitably
restricted range of deformation. In addition, it is shown that
a reasonably close upper-bound solution may be readily ob-
tained.

Derivation of the governing integrodifferential equation is
documented in Ref. 2 and thus only summarized here. The
beam is assumed to be thin and composed of a linearly visco-
elastic material. Its geometry in the deformed configuration
is illustrated in Fig. 1. The loading is assumed to be applied
quasistatically and thus inertia terms are neglected.

Reference line extensional strains are assumed to be
negligibly small. Thus, a coordinate s’ is employed to specify
position in both the initial and the deformed states. A non-
dimensional coordinate s is defined by dividing s’ by the
beam length L. Assuming a linear distribution of strains
through the depth, bending thus occuring within a Bernoulli-
Euler context, results in the moment-curvature relationship
given by

"(s”’)=<—;_)g_., J(t=71) [EAL;S:I'L)]dT (10)

where «(s’,7) denotes the curvature and M(s’,r) the bend-
ing moment at location s’. / is the moment of inertia of the
beam and J(¢) the creep compliance of the material. The
moment at position s’ is given by

M@, 1)=R(7}[L—x(s',7)—A(1}] (an

where R(7) is the end load (see Fig. 1).
From kinematic considerations, we note that

(12a)

»
x(s',r)=—a‘°;s—,)

5
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Bl oo (s',t) 12b
asl = Se(s, ( )

ay(s’,¢t i

y;s, )=sm¢(s',t) (12¢)

Substitution of Egs. (11) and (12a) into Eq. (10), differentia-
tion with respect to s’ and use of Eq. (12b) yield, after non-
dimensionalization

3p(s,1) L’) fl {GIR(T)cosw(s,r)l}
—_ e | — J(t—
as? 7))t ar dr

(13)

The associated boundary conditions are
¢(0,1)=0 (14a)

1,
.a_‘i(_).=o (14b)
as

It is assumed the beam is undeformed for r<0. Then, by.
taking the Laplace transform of Egs. (13) and (14), we
obtain

, 2
*®(s,p) - (_l_‘__)pg(p),sp [R(7)cosp(s,7)]  (15a)

as? I
$(0,p)=0 (15b)
M:O (15¢)
as

where £,{ 1 is the Laplace transform operator, p the
transform variable, and g(p) and ®(s,p) the transforms of
J(t) and ¢(s,?), respectively. Here, we have tacitly assumed
that the Laplace transform of the expression within the
brackets exists, in the usual sense, even though a formal ex-
pression for it is not available.

Assuming that the transform variable appears only as a
parameter, Eq. (15a) can be viewed as a type of ordinary dif-
ferential equation. Integration thus yields

3¢ (s.,p) _ 3%(0.p)

as as
LZ s =
=— (—I—)pg (p) So [50 e"”R(T)COqu(u,'r)d'r]du (16)

where the Laplace transform has been expressed in the ex-
plicit manner. Application of the boundary condition, as

Fig. 1 Geometry of the end-loaded cantileser heam.
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Fig. 2 Angle of deflection of the end-loaded cantilever beam.

given by Eq. (15¢), yields

380, L - !
—fa'sL)= (T)pg(p)fo e-7R(r) [SO cosp(u,r)du]dr

an

Note that we have interchanged the order of integration of
Eq. (16). This follows directly from the assumption of inex-
tensionality; therefore, s and 7 represent independent vari-
ables. Substitution of Eq. (17) into Eq. (16) yields

@Gsp) _ (L = -
6B
X [S:cosw(u,r)du]dr (18)

Integration of Eq. (18) with respect to s, use of the bound-
ary condition [Eq. (15b)], and manipulation as before yield

LZ @
®(s,p)=— (7)1)3 (p) So e 7 R(r1)

X [S: S’ cosw(u,r)dudr]dr (19)
o 1
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The term in the brackets may be simplified through integra-
tion by parts and by employing
g(s,u)=u, 0=suss

=5, s<usl (20)

to yield

LZ 1
$(s.p) = (T)péj (nL, [R(r) go g(s,u)cow(u,r)du] 2n
Thus defining 8(s,7) by

1
8(s,7)= So g(s,u)cosp (u,7)du (22)

‘results in

&(s,p) = (LY/DpJ(p) L, [R(7)8(s,7) ] (23)

Next, the Laplace convolution theorem is employed to invert
Eq. (23) to yield

(N 3[R(1)(s,7)]
e(st)= (—]—) go J(t—r1) S va— dr 24)

Upon a final integration by parts we have

LZ r

e(st)= (—) [J(O)R(t)&(s,l) + 5 J’ (t—r)R(T)O(s,r)dr]
I 0

(25)

where ()’ denotes differentiation with respect to the argu-
ment of the function. Note that Eq. (25) is the viscoelastic
solution reported in Ref. 2.

Bounding solutions are developed in the following man-
ner. Provided, after quasistatic application, the load R(7) is
held constant at some value P, it is reasonable to presume
that the angle of deflection ¢(s,7) will be a nondecreasing
function in time. Thus, for the interval 0* <7</,

p(5,0*)=sp(s,7)<p(s5?) (26)

Consequently, restricting our attention to a range of deflec-
tion such that 0<¢<x/2 we may conclude that

cose(s,0% )= cose (s, 7) Zcose (s, 1) 27
Thus, from Egs. (22) and (27) we have
0(s5,0%)=0(s,7)=0(s.) 28
Through the use of Eq. (28), we can bound the convolution
integral of Eq. (25) as follows:
4 4
Pg(s,0* )50 J{(t—r)dr= So J (t=1)R(7)8(s,7)dr

ZPG(S,I)S; J (t-r1)dr 29

Integration of the first and third integrals in Eq. (29) and
substitution of these results into Eq. (25) yield, after
rearrangement,

PL?
op(s,0) =J(1) (—I—)G(S,t) (30a)
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Fig. 3 Vertical deflection of the end-loaded cantilever beam.

pL? J
e (s.1) =J(0) (—7—) {B(S,I) + [%:)))— 1]9(5,0‘)}

(30b)

Note that Eq. (30a) is the quasielastic solution proposed by
Schapery.

Bounding of the deflection of the beam can be readily ac-
complished by using Egs (30). Nondimensionalization and
then integration of Eq. (12c) yield ’

yist)

I —§: sing (u,7)du @3n

Thus, since ¢, (5,1) <¢(5,1) Se,(51), we note that, for
Ose=<x/2

singy, (5,1) <sing (s,¢) <sing,, (5,7) (32
which yield, upon substitution into Eq. (31)
Yu(s:t) (7.
_lL__= go sing,, (u,t)du (33a)
Yup(8:1) _° .
22D jo singy, (1,1)du (33b)

Numerical solutions of Egs. (25), (30), and (33) are
generated in a manner similar to Ref. 2. Picard’s method of
successive substitutions is employed to numerically solve the
integral equations, Eqs. (25) and (30). Spatial integrals are

GEOMETRICALLY NONLINEAR VISCOELASTIC PROBLEMS

Y -~ ait}-

g. 4 Geometry of the eccentrically loaded cantilever column.
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Fig. 5 Ideal three-elemeni *‘limited™ creep model.

approximated by using Newton-Coates formulas; a fixed-
step trapezoidal rule is used for the time convolution. All
computations are performed on a CDC Cyber 180/855
located at the Georgia Institute of Technology.

Figures 2 and 3 compare the results obtained with the
bounding formulation to the exact solution for the loading
case reported in Refs. 2 and 3. The form of the creep com-
pliance for this example is

J(1)/J0)=1+7.6x 1041+ 1.12(1 — e~ 0.03%) (39)

Figure 2 demonstrates that the bounding solutions provide
a reasonably narrow band at both the midspan and the
loaded end locations. For this particular case, the lower
bound tends to more closely approximate the actual solution.
For both the upper and lower bounds, the discrepancy be-

‘tween the approximate result and the exact solution tends to

increase with elapsed time and distance from the clamped
end.

Figure 3 compares the calculated vertical deflections at
midspan and at the loaded end. It can be noted that the
descrepancies between the bounding and exact solutions
behave in the same manner as described above. In terms of
absolute accuracy, after 24 h, the upper-bound end deflec-
tion exceeds the exact result by approximately 3.3%. The
lower bound, at the same point and time, is only 1.2% less
than the exact deflection. Using a 0.1 h fixed-length time
step, the exact solution required 15.6s of CPU time to com-
pute. Calculated for the same number of time intervals, each
of the bounding solutions required only 4.1 CPU s. Note,
however, that the accuracy of the bounding solutions is in-
dependent of the length of the time step. Thus, identical
bounding solution results can be obtained with, for example,
a 1.0 h time step. Using this larger time step, the computa-
tion time for each of the bounding solutions was reduced to
only 0.5 CPU s. Accurate results could not be obtained from
the exact solution using a time step this large due to errors in
approximating the convolution integrals.

Eccentrically Loaded Cantilever Column

Although formally similar to the prior example, this prob-
lem is of interest because the eccentric loading generates ad-
ditive nonlinear boundary terms in the general solution. The
presence of these terms substantially influences the accuracy
of the predictions of the system response.
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Fig. 6 End deflection of the eccentrically loaded cantilever column
for the three-element model.

A quasielastic solution of this problem was recently
presented by Vinogradov.* Included with the analysis were
numerical results for two ideal constitutive models, using
two eccentricity ratios and a wide range of applied loads.
Subsequently, Vinogradov and Wijeweera® and Wijeweera®
published comparisons of results obtained using the
quasielastic approximation of Ref. 4 to experimental data
from tests conducted on PTFE G-700 columns. The loading
and eccentricity ratios employed in those tests were,
however, restricted to relatively narrow ranges in value.

Bounding solutions for the problem are developed in a
similar manner to the prior example. The column is assumed
to be inextensional, linearly viscoelastic, and loaded quasi-
statically. Its geometry in the deformed configuration is il-
lustrated in Fig. 4. Note that the applied load remains
parallel to the x axis.

For this geometry, the moment at any position s’ is given
by

M(s’,rj:R(r)[6(r)+acosa(r) -y(s', 1)} (35)
Substitution of Eq. (35) into Eq. (10), differentiation with

respect to s’, use of Eqs. (12a) and (12¢) followed by non-
dimensionalization yield

dp(s,t) L\ ¢! {8[R(r)sin¢(s,r)]
75 =—(T)§ LU ar ]d’

(36
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We note that the boundary conditions for this problem are
0(0,0)=0 (37a)
C M(1,t) =aR(t)cose(1,0) (37b)

where, for a rigid ‘‘extension,”’
al=e(L0 (370)
Through the use of Egs. (10) and (12a), the second boundary

condition [Eq. (37b)] can, after nondimensionalization, be
expressed entirely in terms of ¢ by

B (L)1 oo (2RO

as ar

Assuming that the column is undeformed for 7<0 and
that following the procedure detailed in Egs. (15-25) again
yield a solution of the form of Eq. (25) except that, in this
case, :

sa ! .
8(s,t)= (T)cow(l,l) + So g(s,u)sinp (u,t)du (38)

Note that the nonlinear boundary term cose(1,f) appears in-
side the convolution integral as well as in the integrated term
of Eq. (25).

Under a constant load P it is again plausible to assume
that ¢(s,7) will be a nondecreasing function with respect to
r. Thus, in addition to Eqs. (26) and (27), we note

sing(s5,0*) <sinp(s,7) Ssing(s,0) (39)

Because of the differences in bounding behavior in Egs. 27
and (39), the convolution integral of the general solution
[Eq. (25)] is split into two separate integrals that are bounded
individually.

Substitution of the appropriate bounding functions from
Egs. (27) and (39) into Eq. (38) and substitution of these
results into Eq. (25) yield, after integration and rearrange-
ment of terms

PLY\ ([
e (s,t) =J(0) (-T-) {So g(s,u)sing (u,t)du

J(t)] sa
+[—_J(O) (T)co&p(l,t)

J() _] ' : , }
+[—_J(0) | sog(s,u)smga(u,o Ydu (40a)

PL? sa
e (50 =J(0) —1—) {(T) cose (1,1)

J(t) sa R
+ [——J-(a)——l (—E)COS¢(1,0 )

J(t) ! .
+ [—._I_(B)_] So g(s,u)sm¢(u,t)du} (40b)

Numerical evaluation of Egs. (40), as well as the exact solu-
tion given by Egs. (25) and (38), is accomplished in the same
manner as the prior example. Figures 6 and 7 present the
results of these computations for the ideal “‘limited creep”’
model used in Refs. 5 and 6 and illustrated on Fig. 5. For
this particular constitutive model, the creep compliance J(¢)

has the form
J(t) ( E; ) —at
70) =1+ E, e (41a)
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Fig. 7 End deflection of the eceentrically loaded cantilever column
for the three-element model.

where we have employed
J(0)=1/E, (41b)
w=E /9, 4lc)

Figure 6 presents results for E,/E,=0.5 and /L =0.01
for a range of load ratios. In this figure, and all succeeding
ones, we employ a viscoelastic ‘‘Euler’’ load P to non-
dimensionalize the loading, where

xJ

Pg =L 42)

For comparison, this figure also includes results from a
“standard™ quasielastic solution ¢, of the general form

. 2
etsh = (Z) stnocs @3)

where the various functions on the right-hand side are as
previously defined.

It can be observed that the quasielastic solution is almost
identical to the upper-bound result for the load ratios of 0.67
and 0.75. At the load ratio of 0.50, the upper-bound and
quasielastic results differ only in the fourth decimal
place.Thus, only the upper-bound result has been indicated
in the figure for this load case.

Although the upper-bound and quasielastic results com-
pare favorably with each other, neither of them r-r the
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Fig. 8 Reported and normalized experimental data for the six-
element model.

lower-bound solution provides a good approximation to the
exact result except at the lowest load ratio, 0.50. Thus,
reliance on only a quasielastic type of solution, especially for
the higher loading instances, could lead to erroneous results.

With only a quasielastic solution, it is impossible to deter-
mine its accuracy without calculating the exact solution.
Thus, it is not possible to assess the magnitude or character
(i.e., conservative or nonconservative) of the potential er-
rors. In contrast, the amount of separation between the
bounding solutions provides such a capability. The narrow
separation evident at a load ratio of 0.50 might well provide
sufficiently accurate results without resorting to the more in-
volved analysis. The significant differences between the
bounds at the higher loads, instead, indicate that exact solu-
tions must be determined for accurate results.

Figure 7 provides results for the same ratio of modulii, but
for a load eccentricity of 0.10. Again, at the lowest load
ratio (0.30), the quasielastic and upper-bound solutions are
virtually indistinguishable and only the upper bound is
indicated.

Comparison of Figs. 6 and 7 illustrates that the increase in
load eccentricity generates several pronounced effects. The
quasielastic solution, in general, tends to provide a more ac-
curate prediction of behavior at all load levels for the higher
load eccentricity. Additionally, the larger eccentricity tends
to decrease the spread between the upper- and lower-bound
approximations. Thic i< naot. however, a comnalere!s corera!

L
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- Fig. 9 End deflection of the eccentrically loaded cantilever column
for the six-element model.
ha trend, since at the load ratio of 0.50 the bounding is much
more narrow for the lower eccentricity case.
Since some experimental results also are available,’® a
— comparison with these data is worthwhile. Figure 8 provides
- reported as well as “normalized” data for two load-

eccentricity cases. The normalized curves are generated by
- adding the relative displacement of a specimen from its
time=0* (i.e., 10 or 20 s deflection) to the average 0*
hand displacement of that test group. In this way, the significant
differences between the observed results in a test group due
- solely to the differences in “instantaneous’’ deflection could
be eliminated. As indicated in the figure, this virtually
- eliminates the substantial differences between observed
results.
Based on data from four point bending tests the specimen
.material (PTFE G-700) was modeled® as a six-element
“‘unlimited creep” type of material. The numerical form for
the creep compliance is given by

I

J()/J0)=1+3.7x10-%t+0.17(1 —e ")

+0.13(1 —e~0%%) 44

Figure 9 presents the comparison of the exact quasielastic,
upper- and lower-bound results to the normalized test data
of Fig. 8. Note that, while there is an apparent significant
difference between observed and calculated results for the
higher-load case, differences in the 0+ deflection account for
most of it. The average reported ‘“‘instantaneous’’ non-
dimensional deflection was 0.0633, whereas the calculated

value was only 0.0580. If the various results were to be nor-
malized to eliminate this difference, the test data band would
completely overlap the calculated results. However, using
such a procedure for the lower-load case would decrease the
correlation indicated on Fig. 8. Since the observed ‘‘instan-
taneous’ deflection was only 0.00504, normalizing the data
to the calculated deflection of 0.00530 would move the band
of test data so that it would be somewhat above the
calculated results. The main conclusion to be drawn is that,
qualitatively, the calculated results agree with the observed
data. Exact comparability is, however, hindered by the large
differences in initial displacement evident in the test data.

Conclusions

A methodology is presented wherein problems of isother-
mal linear viscoelastic behavior, formulated using nonlinear
kinematic measures of deformation, may be analyzed
through the use of a bounding procedure. The bounding
solutions developed by this technique are similar in form to
that of a time-dependent elasticity problem. As such,
numerical solutions may be generated without requiring the
computation of convolution integrals of the entire history of
deformation. In one of the examples considered, it is shown
that this results in an increase in computational efficiency
more than 30 times greater by comparison to the more tradi-
tional approach.

It is also demonstrated that the bounding procedure pro-
vides reasonably accurate results for a variety of loading
conditions. In those cases where narrow bounds cannot be
established, it is shown that a standard type quasielastic ap-
proach is not necessarily more reliable. The clear implication
of the wide bounds is that the more involved traditional ap-
proach must be employed if highly accurate results are
required.

As presented, the bounding technique can be directly
employed for problems where the governing functions may
be characterized as either nonincreasing or nondecreasing
functions with respect to time. However, the range of ap-
plicability potentially can be expanded to include some forms
of multimodal functions. In general, this would require that
these functions be capable of being characterized, at least in
a piecewise manner, as a sequence of unimodal segments.
Similar to the procedure that was employed in the second ex-
ample, each of these segments would then be bounded in-
dividually. The degree of accuracy that might be obtained
using such a procedure, however, requires further study.
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Solution Methods for One-Dimensional Viscoelastic Problems

John M. Stubstad* and George J. Simitses?

Georgia Institute of Technology, Atlanta, Georgia

A recently developed differential methodology for solu

tion of one-dimensional nonlinear viscoelastic problems is

presented. Using the example of an eccentrically loaded cantilever beam-column, the results from the differential
formulation are compared to results obtained from a previously published integral solution technique. It is shown that
the results from these distinct methodologies exhibit a high degree of correlation with one another. A discussion of
the various factors affecting the numerical accuracy and rate of convergence of these two procedures is also included.
Finally, the influences of some “higher-order” effects, such as straining along the centroidal axis, are discussed.

Nomenclature
a = load eccentricity
A = area of cross section
E = Young's modulus
g(s,u) = Green's function for the spatial integrals
I = moment of inertia
J( = creep compliance -
l = length of cantilever
L, = Laplace transform operator
M,N =moment and force resultant, respectively
P = applied load
P, = Euler load ’ )
55 = dimensional and nondimensional distance along
the beam, respectively -
11 = time
u,w  =axial and transverse displacement, respectively
X,y = spatial coordinates )
Yq = Newton-Cotes quadrature weights
& = centroidal axis strain
K = curvature
¢ = angle of rotation

Introduction

NUMBER of solution methods are available for vis-
coelastic problems in which the behavior of the material
may be adequately characterized by a linear viscoelastic opera-
tor and where the deformation of the body is sufficiently small
to allow the use of a linear kinematic formulation.** Com-

monly, integral transform methods, separation of variables.

series expansions, and other techniques provide methodologies
wherein exact closed-form solutions may be derived. When
exact solutions cannot be obtained, approximate techniques,
such as one proposed by Schapery,® provide an alternate
approach. -

The inclusion of nonlinear effects in the analysis significantly
reduces the mathematical tractability of the problem. These
nonlinear influences can be induced by geometric factors re-
sulting from the magnitude of the deformation or from gross
rotation of cross sections. Alternatively, nonlinearities in the
material response may need to be included to provide an accu-
rate model for material behavior.

Independent of whether the nonlinearities are produced by
geometric or material effects, they invariably result in non-

Presented as Paper 87-0804 at the AIAA/ASM E/ASCE/AHS 28th
Structures, Structural Dynamics and Materials Conference, Monterey,
CA. April 6-8, 1987, reccived May 27, 1987, revision received Aug. 27,
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tics. Inc., 1987. All rights reserved.

*Former Graduate Rescarch Assistant, School of Engineering Sci-

-ence and Mechanics. Member AIAA.
tProfessor of Aerospace Engincering. Associate Fellow AIAA.

linear governing equations. Thus, the solution methods men-
tioned here, applicable to linear problems. generally cannot be
employed. Approximation methods,* however, have been de-
veloped and can be employed to analyze such problems.

One of these methods is to idealize the problem in a manner
that inherently simplifies the governing relations. An example

‘of this technique was the utilization of an ideal “I" cross-

sectional geometry in early column creep-buckling studies.’
With this approximation, the equilibrium equations were re-
duced to simpler forms, involving the “average’ stresses in the
ideal flanges, where closed-form solution was possible.
Another approach used extensively was to restrict consider-
ations to only certain types of time-dependent material behav-
ior.® In some cases, this involved retaining only secondary
creep behavior in the material model. Alternatively, and espe-
cially when “power-law™ type constitutive laws were used, the
constants or exponents of the law were restricted to special

. values for which closed-form solution was possible.” Tn a few

cases, this approximation, as well as the aforementioned geo-
metric simplification technique. were employed simultaneously
to enable solution. A survey of many of these techniques has
been provided by Hoff.®:

A more general technique for the solution of geometrically
nonlinear viscoelastic problems was first presented by Rogers
and Lee.? In this method, the solution was formulated as an
integral equation that was nonlinear in both time and space.
From this, numerical results were obtained using computa-
tional techniques. A recent paper by the authors'?® provided a
method for bounding the solution of problems formulated in
this manner.

Generally, both the exact and bounding technique can be
employed for problems wherein the response of the material
may be adequately characterized using a linear viscoelastic
model. but where the resulting time-dependent deformation of
the body warrants the use of a nonlinear kinematic formula-
tion. Problems involving nonlinear viscoelastic material behav-
jor, however, currently cannot be addressed with this method.
Unfortunately, many materials. and especially the elevated
temperature behavior of most metals, require a nonlinear con-
stitutive characterization. Consequently, an alternate solution
procedure for one-dimensional problems involving nonlinear
kinematic and nonlinear material effects has been developed.
This method, hereinafter referred to as the differential formula-
tion. is based on the direct solution of the nonlinear differential
equations of equilibrium,

Similar to the integral method, the differential formulation is
predicated on the assumption of a quasistatic response. This,
cffectively, “decouples™ the temporal and spatial dependence
of the problem in a manner that allows the general solution to
be treated as the scquential combination of solutions to a non-
lincar ““boundary value™ problem and a nonlinear “initial
value™ problem. The first of these. the equations characterizing
the time-dependent states of quasistatic equilibrium, are solved
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through the use of a Newton-type method.'' The “initial
value™ problem, resulting from the nonlinear constitutive law,
governs the manner by which the body progresses from one
state of quasistatic cquilibrium to the succeeding one. Numeri-
cal solutions for this part of the problem are generated using a
fourth-order Runge-Kutta method. This general method has
recently been employed to examine the nonlinear thermovis-
coclastic behavior of thin structural members.'?

In addition to presenting the differential formulation tech-
nique. a comparison of results obtained using the intcgral and
differential formulations is provided. The problem of an eccen-
trically loaded viscoelastic cantilever beam-column is employed
as the vehicle through which the comparison is performed.
Because of the inherent limitation of the integral technique,
this comparison is restricted to the consideration of a linear
viscoelastic material. The specific case considered is that of the
three-parameter viscoelastic solid, which has been examined in
a number of studies.'®!3'? The results obtained from these two
distinct methods of solution exhibit a surprisingly high degree
of correlation with one another, thereby establishing a high
level of confidence in the validity of the methods. Finally, the
differential formulation is employed to examine the influences
of some “‘higher-order” effects in the class of problems under
consideration. - }

Integral Formulation

The Rogers and Lee formulation method,® hereafter referred
to as the integral solution technique, is focused toward formu-
lating the solution to the nonlinear viscoelastic problem in
terms of an integral equation. The general method was evolved
through analogy to the associated geometrically nonlinear elas-
tic problem. Only a synopsis of the method is presented here
since complete developments for the technique are available in
the literature.>!°

In the integral formulation, the time dependence of the mate-
rial behavior is expressed in the form of a Volterra-type inte-
gral operator. This operator acts upon.a second integral
expression, which characterizes the quasistatic equilibrium of
the body. For application to beam-column-type problems, it is
assumed that the beam-column is thin and composed of a lin-
early viscoelastic material. In addition, referenced line exten-

sional strains are assumed to be negligibly small. Thus, the 2

coordinate §, denoting distance along the undeformed length,
can be employed to specify position in both the initial and
deformed configurations. For convenience, a nondimensional
coordinate s is defined by dividing § by the length of the beam
{. Figure 1 illustrates a typical geometry used with this method.
For the sample problem, the eccentric load is assumed to-be
applied quasistatically, and its direction does not vary with
time. -
Assuming a linear distribution of the strains through the
depth, bending, thus occurring within an Euler-Bernoulli con-
text, results in 2 moment-curvature relationship of the form

k($) = (;) J.' Jir -1 [QA%(:‘—Q] dr n

where k(§,7) denotes the curvature and M(5,t) the bending mo-
ment at location §. / denotes the moment of inertia of the beam
and J(¢) the creep compliance of the material. For the sample
problem, the moment at position § would be given by

M) = P(0)[6(2) + ¢; cosa(t) — y(§,1)] 2)

where P(z) denotes the load applied at eccentricity x. Since

) = 2200 3

_then, for quiescent initial condition, the Laplace transforma-

" tion.of Eq. (1) yiclds
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a(s,
BE0) L proIL, M G0) @

where J{ p) and d(s.p) denote the transforms of J(¢) and ¢(s,1),
respectively, and where p represents the Laplace variable. Note
that the nondimensional coordinate s has also been employed
in the preceding expression.

Assuming that the Laplace variable apears only alge-
braically, Eq. (4) has the form of a type of “ordinary” differen-
tial cquation. Consequently, integrating with respect to s yields

, ;
25p) - #0.0) =1 IO, [ M o] ©®
0

Note that the order of integration and Laplace transformation
has been interchanged. This is a direct result of the assumption
of inextensionality; consequently, s and ¢ represent indepen-
dent variables. :

Equation (5) reveals a very interesting aspect of this formu-
lation. Namely, the underlying structure of the equation is
completely determined by the manner in which the moment
depends on the deformation. For example, even if the moment
depends upon the spatial coordinate s, provided it is jndepen-
dent of the deformation, then the basic equation is, in princi-
ple, integrable to a closed-form solution. This solution is, in
fact, the usual result obtained from a linear analysis.

Illustrating how the equation structure changes when the
moment is related to the deflection is best demonstrated
through analogy with the associated elastic problem. Note that
the governing relation for the associated elastic problem can be
obtained by replacing the creep compliance by the elastic com-
pliance and eliminating the Laplace operator. This yields

' ([ .
$.3) — ¢0) = 7 J- M(r)dr {6
0

Note that the governing equation for the associated elastic
problem takes on the form of a linear Fredholm equation when
the moment depends linearly upon the deflection. In contrast,
a nonlinear Fredholm format is obtained for cases where the
moment is nonlinearly dependent upon deformation. In a sim-
ilar manner, the viscoelastic problem takes on a linear “quasi-
Fredholm™ form when the moment is linearly dependent upon
the deformation. A nonlinear “quasi-Fredholm™ format occurs
when, as in the sample problem, the relationship between mo-
ment and deflection is nonlinear.

- To complete the formulation for the sample probiem, Egs.
(2) and (3) are substituted iato Eq. (1). Following differentia-
tion with respect to s, the kinematic relations

ax($) _ .

T cos¢(s,1) o
DED _ inots

i .

Fig. | Beam-column geometry for the integral method.
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are employed to express all deformation-related quantities in
terms of ¢. For the sample problem. the boundary conditions
are
$(0.0 =0
M1 = aP(1) cospil.n) %)

where 2(1) = ¢(L0) for a “ngid” extension. Thus, using the
methodology detailed in Ref. 9 and assuming quiescent initial
conditions yiclds the solution

P(s.0) = (17) [J(O)P(r)@(s,t) + I J(t = )P(D)O(s,7) dt]
0
&)

where

) 1
OG.1) = (f;) cosd(1,1) + j g(s.0) sing(r) dr  (10)
[1]

and °
gsn=r, 0srss

=3, s_SrSl

(11)

Note that the prime in Eq. () denotes differentiation with
respect to the argument of the function.

Equation (9) represents a time convolution of a nonlinear
spatial integral equation, Eq. (10). Numerical solutions are
obtained using Picard’s method of successive substitutions.’’
Newton-Coates formulas are used to approximate the spatial
integral, and a fixed-step trapezoidal rule is employed for the
time convolution. The general format of the algebraic expres-
sions obtained in this manner is

: _
sut) = = A:[(n . J'((»)@(s.-,x,)

4 P,
n—-1 I
T+ Y S 1)OGat) + 3 J'(in)@(s.,0+)} (12)
j=2 4
with ) - -
5a ! .
Ofs,t) = - cosg(1.1) + As[ Y vare sing(rit)
- k=1
P . -
+ Y uS smqb(rk,lj)] (13)
k=i

Note that in Eq. (12), the number of terms in the summation
increases linearly with each succeeding time step, whereas the
number of terms in the Summations represented by Eq. (13) is
fixed. This increasing summation requirement in Eq.(12) hasa
significant impact on the relative speed of the integral formula-
tion computations.

Differential Formulation

As previously noted, the differential formulation technique is
based on the direct solution of the governing differential equa-
tions. Similar to the integral formulation, the differential for-
mulation is also based on the assumption of quasistatic
behavior. From this, the equations governing the successive
states of quasistatic equilibrium may be expressed in terms of
deformation functions and force and moment resultants. Con-
sequently, these equations have the gencral format of a nonlin-
ear boundary value problem. A Newton-type method, first
suggested by Thurston,!! is employed to derive solutions for
this part of the problem.

On the other hand, the constitutive law, expressing the time
dependence of the material response, governs the evolution of

_ the force and moment resultants as the systcm progresses be-
* lween successive states of quasistatic equilibrium. This repre-
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sents a form of initial value problem with the values of the
constitutive variables, such as accumulated viscoelastic strain,
providing the initial conditions. For a nonlincar constitutive
Jaw. numerical procedures such as a Runge-Kutta or Euler
method may be employed to predict the growth of these vari-
ables. Note that, for a “beam-theory” type formulation such as
this, a spatial integration of the viscoelastic strain across the
cross section is also required to enable evaluation of the force
and moment resultants.

Similar to the integral formulation, the differential formula-
tion for the sample problem is also based on the assumption
that bending of the beam occurs in accordance with the Euler-
Bernoulli hypotheses. Employing the functions u(s,r) and w(s.f)
1o denote, respectively, the axial and transverse deflection of
the centroidal axis. then the extensional strain at the centroidal
axis €, is approximately given by

du 1[/éw\?
S dad 4
fo 65+2(65) (19)

Note that the term }(du/ds)? has been neglected as small in
comparison to Cu/ds. If, in addition, both the strain at the
centroidal axis and éu/és are small in comparison to 1, then it
is simple to show that ’

3¢ dwdu 0w

35~ s st 05t -

(15

where ¢ denotes the angle of rotation of the cross section.
Thus, the assumption of a linear variation of strain across the
cross section yields

. |
=t n s (16)

Employing the principal of virtual work followed by integra-
tion by parts and subsequent algebraic manipulation yields the
equilibrium equations

N = —F{l + %‘g {a cosa(l) + w(s) — w(l)]} (17a)

M = Fla cos¢(l) +w(s) — w(l)] (17b)

where N and M, the force and moment resultants, respec-
tively, are defined as . _

N=\o0,d4 (18a)

5
A -

- M= g no,,dA (18b)
y :

Based on an additive decomposition for the total strain,
€, =€, +¢, where ¢, and ¢, represent the elastic and creep
strain components, respectively, yields, after substitution into
Eqgs. (17) and (18), ~

Edeg= —F{l +%§ [a cosp(l) + w(s) — w(I)]} + N, (1%a)

Er %3 = F [a cosdp(l) + w(s) — w(D)] + M, (19b)

where the “*pseudoresultants’” N, and M are defined by

N, = g EedA — (03
A

M. = \ nEe.dA (20b)
A
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Numerical solution for Egs. (19) are computed using a
moditicd Newton-tvpe method suggested by Thurston.' To
illustrate this method. consider a nanlinear differential term of
the form dudw” where du and dw are differentials of the

J. ML STUBSTAD AND G. J. SIMITSES

functions # and w and m and » represent integer cxponents. over the applicable term.

Assuming that close trial solutions ¥ and 4 are available, which
ditter from the exact solution by the small quantities Aw and Au

50 that u = 17 + Au and w = + Aw. then

dumdw” = dd"dw" £ mdia” ~ ! di"d(Aw)

where f{) denotes a nonlinear function of & and W and O[]
indicates terms of order Audw and higher. If the trial solution
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In these equations, the subscript { is used to represent interior
nodcs. and the subscript n is employed to indicate the node at
the loaded end of the beam-column. Values obtained from the
trial solution have been denoted by the placement of a tilde

Numerical solution of Eqs. (22) requires evaluation of the
“*pseudoresultants” N, and M, at each interior point of the

finite-difference mesh. This is accomplished by evaluating the
accumulated creep strain at a select number of points across
the cross section at each of the axial nodes. A three-point
. Newton-Cotes quadrature formula is then employed repeti-
+ ndimdiw” = 1d(Aw) + f(6.5)0{AuAw] (2 tively to approximate the area integrals. For the sample calcu-
lations reported herein, evaluation of the accumulated creep

is indeed close to the true solution, then the Forrectipns Au and the constitutive law.

Aw will be small. Conscquently, the quadratic and higher-order

terms in the corrections will be negligible in comparison to the ]

linear terms and therefore may be ncglected. Thus, the left- - Example Problem

hand side of Eq. (21) may be closely approximated by the
lincarized form consisting of just the first three terms on the

right-hand side.

With this procedure, the original nonlinear differential equa-
tion is approximated by a linearized form. Employing standard
finite-difference formulas, the linearized form is then converted

strain at each of these points is accomplished through the use
of a fourth-order Runge-Kutta integration routine to integrate

The specific example considered is that of a 30.5¢m (12in.)
long beam-column. For simplicity, a square cross section of

dimension 12.7 mm (0.5 in.) has been assumed. It is also as-

into a system of algebraic equations where the unknowns are by
the corrections to the trial solution at the nodes of the finite- ‘ -

difference mesh. These relations are solved for these correc-

JO)/I(0) =1 +[E,/E Je "

tions, the trial solution is adjusted, and the process repeated

until convergence is obtained.

Application of this procedure to the geometry of the sample
problem, e.g., yields the finite-difference expressions

oW, ow ow

El-—Au;_, - ZEI—Au + EI— Au,

ds os Os

a i 3
- E](I +2As —’;) Aw,_ + (2ET = As*P)Aw,

é

- EI( 2 ) Aw,, |+ As*PAw,

+2AsPa tand(Aw, _ —w,, 1)
= As? [M: +M, —EI ?i}

and

M (31”— -2_\sEA) u_, —2M: Qim

ds

-M (%W— +24sEA >Au,,,

2 -~
[ZASEA L YE (2453 il 1)
3s 352
- q&,
+ 2As5P tang, {Aw; _, + v

. = 25
+ [ZASEA AZON M;(zm?— - 1)
as ds?

3%,

Fre ASZPAW

+ 245P tané,}AwH,

-2 ?a%i AsPa tang,(Aw,_ | — Aw, )

As'P +2M; )Aw,

33,

sumed that the beam-column is fabricated from a material that
can be modeled as a three-parameter viscoelastic solid. The
creep compliance for this model, illustrated in Fig. 2, is given

(24

where 1, = v,/E,. For-the sample computations, the numerical

values for the parameters have been selected so that 7o =1.
Thus, integer values for time ¢ are equal to muliiples of the time

constant of the material. The elastic modulus of the material,

perature modulus.of Hastelloy X.

E,, is assumed to be 196 GPa (28.5 x 10° psi), the room tem-

A five-point grid in the transverse direction is used in com-
puting the “pseudoresultants” in the differential formulation.
The points are equidistantly spaced, with the-first and last

located at the extreme fibers and the central point positioned

on the centroidal axis.

Since the governing equations of both the differential and
integral formulations are only satisfied at a discrete number of
points over the length of the beam-column, the first question

(22a) addressed is the sensitivity of the results
points used in the approximation. Table 1,

to the number of
for example, com-

pares initial elastic deflections determined using the differential

formulation as the number of abproximating points is doubled
from 10 10 20 and then doubled again to 40. Table 2 provxdes
- a similar comparison for the integral formulation.

It can be seen that there is very Intle change in the computed

- transverse deflection as the number of approximaling points is
- - increased. In both cases, the initial elastic solution for the 10-
element model is within 1.0% of the 40-element model results.
Additionally, the relative magnitude of the errors between the

10- and 40- as well as the 20- and 40-element models of the

differential formulation are very similar to those exhibited by

the equivalent comparison of integral solution models. These
specific results, of course, apply for an eccentricity ratio of 0.03

and an applied load of P/P, = 0.75, where the Euler load P, is
based on a perfect geometry and use of the instantaneous com-
pliance of the material J(0). However, they, like other results
reported herein, illustrate the general trends observed at other

load levels and load eccentricities.

Thus, both formulations exhibit a similar low sensitivity to

the number of elements used in the analysis.

Concurrently, the

results also indicate that a 10-element model can be used with
either method without generating significant errors in the anal-

ysis. It should be noted that all of the differential formulation

=As? | - 3. - 20 2 X

= As [ Pcosé; + N, — Eg; - M; 3 ] (22b) results presented in the first table are based on the use of an
exact expression for evaluating the angle of rotation. The influ-
ence of employing an approximate formula for calculating the

M} = P(a cos¢, + W, — W

)

[pX)] angle of rotation is discussed in a later section. Also note that
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at this load and cccentricity, the initial end rotation of the through multiplication by a factor of 1000. This second change

. beam-column exceeds 17 deg. Of coursc. smaller rotations are reduces the magnitude of the axial deflections u by approxi-
= exhibited at the lower loads and lower eccentricitics. Higher mately the same factor. The overall intent of this effort was to
loads and larger cccentricitics, conversely, produce greater create a diffierential model that would simulate the axial “inex-

rotations.
A direct comparison between the results generated by the

— two formulations is provided in Tables 3 and 4. Again, the
comparison is based on the 0.05 eccentricity ratio, which pro- Table I Differential elastic solution vs number of nodes for

duces reasonably large angles of rotation. Angles of rotation of P[P, =0.75 and a/l =0.05
the cross section, determined from the integral technique, are

.= included in the tabulated data. Transverse deflection (cm) for various numbers of elements
It should be noted that the differential solution results pre- Number of elements
sented in Table 3 are based on the use of an exact expression
Co for evaluation of sing. Differential solution results obtained s=§jl 40 20 % diff*
- using an approximate expression for sing are provided in Table
4. The common approximation ¢ = sin~!(—0w/ds) is em- g? ggggggg 882%32? 0_13
ployed to calculate the angle of rotation for this second set of 0.2 0.249400 0.249700 0.12
results. Except for this particular dlfi}:rence,.theseT two differen- 0.3 0.556448 0.557103 0.12
tial formulations are otherwise completely identical. 04 0.977725 0.978855 0.12
These results indicate that little difference exists between the 0.5 1.504980 1.506695 0.11
initial deformation predicted using the integral formulation 0.6 2.128050 2.130438 0.11
and that predicted by either differential solution. The differ- 0.7 2835125 © 2838262 0.1
ences between the integral and differential methods are typi- 0.8 3.613038 3.616978 0.11
cally an order of magnitude lower than the differences observed 0.9 4.447532 4452313 0.11
for either technique when the number of elements was quad- ) 1.0 5.323528 5.329169 0.11
: rupled. A potentially high-order effect may be indicated by the s=3l 40 10 v, diff
e relative increase in differences at the highest loading examined. -
i However, despite this increase, the magnitude of the differences 0.0 0.000000 0.000000 —_
is still so small as to be completely inconsequential with regard 01 0062669 = 0.063015 0.55
to engineering computations. 02 0.249400 0.250858 .. 059
The data also indicate that no significant differences in the 03 0.556448 0.559534 0.56
differential formulation (predicted transverse deflections) oc- 8; ?gaggg ?gﬁgfg gg;
cur as a result of using an approximate formula for evaluation 0.6 2.128050 2139785 0.55
l of sing. Even for an end rotation angle of 17 deg, the exact‘and 0.7 2.835125 2.850330 0.54
ﬁ" approximate resu1t§ differ only in }he }hlrd or fourth decxrpal 08 . 3.613038 3.632429 0.54
place. It should be noted that this high level of correlation - 0.9 4.447532 4.470819 0.52
N continues to exist for even greater angles of rotation. 1.0 - 5.323528 5351315 0.52
The probable reason for this high correlation is that, under = = ——
compressive loading, the derivative of the axial displacement is *% differences are with respect to 40-clement solution. : -
- negative. With reference to Eq. (14), this implies that the cen-
troidal axis strain is numerically equal to the difference be- Table 2 Integral elastic solution vs number of nodes for
- - tween the two components since the squared term (slope of the PP, =0.75 and a/l =0.05
— transverse deffection) is always positive. Thus, the magnitude
v of the centroidal axis strain must be less than the magnitude of - Transverse deflection (cm) for various numbers of clements
- either of its components. Because the difference between the
- exact and approximate expressions for sing is related to the Number of elements _
. 1 + 2¢ in the denominator of the exact expression, reducing s =3I 40 20 o, diff*
— the magnitude of the centroidal strain must inherently improve -
the accuracy of an approximation where this term is neglected. 0.0 0.000000 0.000000 —
This is best illustrated by the data of Table 5. Here, the .ol 0062525 . 0062616 0.15
integral solution is compared to an approximate differential gg ggggég ggg;g? g}g
o solution in which the effect of the centroidal axis strain terms 0.4 0975561 0977115 0.16
are suppressed. This suppression 15 accomplished by eliminat- 0.5 1.501648 1503906 01.5
- ing all the (dw/ds)? terms from the goverming equations. In 0.6 2.123316 9:126658 - 016
= addition, the £4 modulus-area product is artificially increased 0.7 2.828762 2.833050 0.15 --
T 0.8 3.604837 3.610412 0.16
0.9 4.437309 4.443969 0.15
.. 1.0 5311148 5.319194 0.15
5, s=§f 40 10 % diff
0.0 0.000000 0.000000 -
0.1 0.062525 0.062944 0.67
Ey - : 0.2 0.248836 0.250833 0.80
o - 03 0.555208 0.559112 0.70
: _ _ 0.4 0.975561 0.981829 0.64
, 0.5 1.501648 1.512425 0.72
0.6 2.123316 2.137987 -0.69
0.7 2.828762 2.847177 0.65
_ " _ 03 3.604837 3.629746 0.69
09 - 4.437309 4.466392 0.66
1.0 5311148 5.348440 0.70

14

Fig. 2 Ideal three-element “limited" creep model. e%, ditTerences are with respect to 40-element solution.
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Table 3 Comparison® of integral und differential® elastic solutions for
various loads with a/l =0.05
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Table 4 Comparison® of integral and differential® elastic solutions for
various loads with a/l = 0.5

Transverse detlection (¢cm) from various solutions

Transverse deflection (¢m) from various solutions

Angle, Angle,
s=3id Integral Differential % diff deg s=3/l Integral Differential % diff* deg
PP, =0.25 P/P, =025
0.0 0.000000 0.000000 — 0.00 0.0 0.000000 0.000000 — 0.00
0.1 0.006642 0.006645 0.04 0.25 0.1 0.006642 0.006645 . 0.00 0.25
0.2 0.026543 0.026538 -0.02 0.50 0.2 0.026543 0.026538 -0.02 0.50
0.3 0.059548 0.059550 0.00 0.74 0.3 0.059548 0.059550 0.00 0.74
0.4 0.105461 0.105489 0.03 0.98 0.4 0.105461 0.105489 0.03 0.98
0.5 0.164059 0.164056 0.00 1.22 0.5 0.164059 0.164056 0.00 1.22
0.6 0.234887 0.234907 0.01 1.4 0.6 0.234887 0.234907 0.01 [.44
0.7 0.317525 0.317579 0.02 1.66 0.7 0.317525 0.317579 0.02 1.66
08 0.411579 0.411592 0.00 1.87 08 0.411579 0.411592 0.00 1.87
0.9 0.516270 0.516329 0.01 2.07 0.9 0.516270 0.516329 0.01 207 -
1.0 0.631223 0.631182 -0.01 2.25 1.0 0.631223 0.631182 —0.01 2.25
: P/P, = 0.50 " P[P, =0.50
0.0 0.000000 0.000000 — 0.00 0.0 0.000000 0.000000 — 0.00
0.1 0.021039 0.021044 0.02 0.79 0.1 0.021039 0.021046 0.04 - 0.79
0.2 0.083962 © 0.083932 -0.04 1.57 02 0.083962 0.083932 ~0.04 1.57
0.3 0.187808 0.187828 0.01 233 03 0.187808 0.187830 0.01 2.33
0.4 0.331320 0.331511 0.06 3.07 04 0.331320 ° 0.331511 0.06 3.07
0.5 0.513103 0.513077 0.00 3.76 0.5 0.513103 0.513080 0.00 3.76
0.6 0.730283 0.730400 0.02 4.40 0.6 0.730283 0.730402 0.02 4.40
0.7 0.980300 0.980618 0.03 5.01 0.7 0.980300 0.098620 0.03 5.01
08 1.260747 1.260810 0.01 5.52 0.8 1.260747 1.260813 0.01 5.52
0.9 1.566974 1.567304 0.02 6.01 0.9 1.566974 1:567307 0.02 6.01
1.0 1.896801 1.896542 -0.01 6.38 1.0 1.896801 1.896547 —0.01 6.38
P[P, =075 - P/P,=0.75
0.0 0.000000 0.000000 — 0.00 0.0 - 0.000000 0.000000 — 0.00
0.1 0.062944 0.063015 0.11 237 0.1 0.062944 0.063017 0.12 237
0.2 0.250833 0.250858 T 001 4.68 0.2 0.250833 0.250868 0.01 4.68
03 0.559112 0.559534 0.08 6.91 0.3 0.559112 0.559559 0.08 6.91
04 0.981829 0.983259 0.15 9.03 04 0.981829  _ 0.983305 0.15 9.03
0.5 1.512425 1.513218 0.05 10.97 0.5 1.512425 1.513286 006 - 1097
0.6 2.137987 2.139785 © 0.08 12.68 0.6 2.137987 2.139881 0.09 12.68
0.7 2.847177 2.850330 0.11 14.23 0.7 2.847177 2.850459 o.l2 14.23
0.8 3.629746 3.632429 0.07 15.41 08 3.629746 3.632594 0.08 [5.41
0.9 4.466392 4.470819 0.10 16.44 0.9 4.466392 4471020 0.10 16.44
1.0 5.348440 5351315 0.05 17.04 1.0 5.348440 5.351554 . 0.06 17.04

1Comparisons based on results from 10-element models. *Differential solution
employing an exact sing formula. “% differences are with respect o integral
solution.

tensionality™ of the integral model. These changes did produce
a differential model with an effectively inextensional centroidal

" axis. It was anticipated that this would further improve the

correlation between the differential and integral results. Unfor-
tunately, such was not the case.

When the angle of rotation is very small, such as one that
results from a low level of loading and minimal eccentricity, all
formulations provide virtually identical predictions. Increases
in the angle of rotation, however, due to increases in loading or
eccentricity or both, cause the modified differential predictions
to diverge from those of the others. This divergence between
results increased with both load magnitude and eccentricity.

This behavior is attributed to the manner in which the
modified numerical mode! handles the end deflection of the
beam-column. In the modified model, the end of the beam-
column effectively moves only in the vertical direction (see Fig.
1). The standard differential model as well as the integral
model, however, include influences generated when the end can
move both vertically and horizontally. Thus, for any given
vertical deflection, the horizontal movement that occurs in the
intcgral and unmodified differential models acts to increase the
angle of rotation. This, in turn, reduces the magnitude of the
applied moment [sce Eq: (23)]. Therefore, at any particular
given vertical deflection, the moment loading in the standard
formulation model is lower than that in the modified version.
Effectively, the moment decreases a greater amount in the un-

*Comparisons based on results from 10-clement modeis. ®Differential solution
employing an approximate sing formula. “% diflerences are with respect o
integral solution. -

modified model than it does in the modified model at equiva-
lent amounts of transverse deflection. This, in turn, implies that
the beam-column of the unmodified model would not deflect as
much as the one of the modified model would.

The implication is that the numerical modeling of the mﬁu-
ence of deformation on loading is an important factor. This
conclusion is consistent with the observations made concerning
how the structure of the integral equation, Eq. (5), changes as
a result of the interaction between loading and deflection. Ad-
ditionally, it should be noted that neglecting centroidal axis
strain in the differential technique does not necessarily provide
an effect equivalent to the assumption of inextensionality in the
integral techniques. This is attributed to the fact that the elim-
ination of the centroidal axis strain in the differential formula-
tion can be accomplished only at the expense of reducing the
actual coupling between deformation and loading.

For both methods, the initial elastic deffection of the beam-
column provides the initial condition for the viscoelastic defor-
mation. Consequently, any differences in the initial elastic
responses predicted by the two methods will only be accentu-
ated during the subsequent period of time-dependent behavior.
The comparisons discussed demonstrate that the two methods
provide virtually identical predictions of initial elastic deforma-
tion. Table 6 provides a typical comparison {or the integral and
the differential (exact sing) method predictions for the vis-
coelastic deflection of the beam-column over a period of two
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Table 5§ Comparison® of integral and modificd differential® elastic
solutions for various loads with afl = 0.05

Transverse deflection (vm) from various solution

Angle,
s=481 Integral Differential % difl* deg
PP =025
0.0 0.000000 0.000000 — 0.00
0.1 0.006642 0.006645 0.00 0.25
0.2 0.026543 0.026333 -0.04 0.50
0.3 0.059548 0.059548 0.00 0.74
0.4 0.105461 0.105479 0.02 . 098
0.5 0.164059 0.164048 -0.01 1.22
0.6 0.234887 0.234854 0.00 1.44
0.7 0.317525 0.317576 0.02 1.66
08 0.411579 0.411589 0.00 1.87
0.9 0.516270 0.516349 0.02 2.07
1.0 0.631223 0.631210 0.00 2.25
PiP, = 0.50
0.0 0.000000 0.000000 —_ 0.00
0.1 0.021039 0.021067 0.13 0.79
0.2 0.083962 0.084005 0.05 1.57
03 0.187808 0.188041 0.12 233
0.4 0.331320 0.331889 0.17 3.07
0.5 0.513103 0.513776 0.13 3.76
0.6 0.730283 0.731457 0.16 4.40
0.7 0.980300 0.982246 0.20 5.01
0.8 1.260747 . 1.263051 0.18 5.52
0.9 1.566974 1.570406 0.22 6.01
1.0 1.896801 1.900517 0.20 6.38
P/P, =075 -
0.0 0.000000 0.000000 — 0.00
0.1 0.062944 0.064879 3.07 2.37
0.2 10.250833 0.258313 298 4.68
0.3 0.559112 0.576725 3.15 6.91
04 0.981829 - 0.014219 3.30 9.03
0.5 1.512425 1.562702 332 10.97
0.6 2.137987 2.212025 3146 12.68
0.7 2.847177 2.950167 3.62 14.23
0.8 3.629746 3.763475 3.68 15.41
0.9 4.466392 4.636892 382 16.44
1.0 5.348440 5.554259 3.85 17.04
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Table 6 Comparison® of integral and differential® viscoelastic solutions
to two time constants; P[P, =0.50 and a /! =0.05

Transverse deflection (cm) for various solutions

Angle,
5= 3§/ Integral Differential Y difl* deg
at time =0
0.0 0.000000 0.000000 - 0.00
0.1 0.021039 0.021044 0.02 0.79
0.2 0.083962 0.083932 —0.04 1.57
0.3 0.187808 0.187828 0.01 233
04 0.331320 0.331511 0.06 3.07
0.5 0.513103 0.513077 0.02 3.76
0.6 0.730283 0.730400 0.02 4.40
0.7 0.980300 0.980618 0.03 5.01
0.8 1.260747 1.260810 0.01 5.52
0.9 1.566974 1.567304 0.02 6.01
1.0 1.896801 1.896542 -0.0!1 6.38
at time =1,
0.0 0.000000 0.000000 — 0.00
0.1 0.038311 0.038326 .0.04 1.44
0.2 0.152784 0.152725 -0.04 2.86
0.3 0.341170 0.341234 0.02 4.22
04 0.600532 0.600994 0.08 5.54
0.5 0.927608 0.927590 0.00 6.76
- 0.6 1.315809 1.316129 0.02 7.86
0.7 - 1.759290 1.760083 ~ 0.05 8.87
0.8 2.252647 2.252896 - 001 9.70
09 2.785532 2.786395 0.03 10.44
1.0 3.353191 3.352810 —0.01 10.95
at time = 21,
0.0 0.000000 0.000000 — 0.00
0.1 0.048583 0.048611 0.06 1.83
0.2 0.193685 0.193629 -0.03 3.62
0.3 0.432178 0.432313 0.03 5.34
0.4 0.759968 0.760689 0.09 7.00
0.5 1.172517 1.172627 ©0.01 8.52
0.6 - 1.660764 1.661396 0.04 9.88
0.7 2.216699 2.218045 0.06 11.13
0.8 2.832971 2.833680 0.03 12.12
0.9 3.495617 3.497252 0.05 12.99
1.0 4.198267 4.198371 0.00 13.55

1Comparisons based on results from 10-element models. ®lnfluences of centroidal
axis strain terms suppressed. % differences are with respect to integral solution.

material time constants. The viscoelastic model employed for
these computations is the three-parameter “limited” creep ma-
terial illustrated in Fig. 2. As noted previously, the material
parameters were selected so that the material time constant 7,
equals unity. The load and eccentricity ratios for this particular
set of results were P/P, = 0.50 and a/l = 0.05, respectively.

As demonstrated by this data, the high correlation between
the integral and differential method predictions for the initial
elastic deflections carries over directly to the viscoelastic analy-
sis. The time-dependent deflection predicted by one technique
is virtually indistinguishable from that predicted by the other.
This indicates that the differential formulation methodology
employed to account for the influence of viscoelastic strain
provides the equivalent effect as the hereditary integral compo-
nent of the integral formulation. As such, this fends high confi-
dence to the differential solution methodology.

1t should be noted that these particular numerical results are
typical of other results obtained for higher, as well as lower,
loads and eccentricities. Generally, the corre)ation between the
solutions was not influenced by the magnitude of the loading or
the amount of load eccentricity.

A minor, high-order-type influence was, however, noted. As
the angle of rotation became very large, on the order of 45 deg,
a small but distinct divergence in predicted deflections was
_observed. Typically, the rate of increase in deflection predicted
by the differential formulation would begin to slightly exceed

*Comparisons based on results from 10-element models. ®Differential sotution
employing an exact sing formula. % differences are with respect to integral
solution.

that predicted by the integral method. Normally, this could be
observed as time approached two material time constant for
the highest loads (P/P, approaching unity) and with extremely
large eccentricities. Under some conditions, it also could be
observed as time exceeded four to five material time constants.

These observed differences between the two sets of predic-
tions were still very small. Generally, they were on the order of
0.10%. Thus, from a practical viewpoint, they are totally negli-
gible with respect to normal accuracy requirements for engi- .
neering computation. It is mentioned here only to indicate that,
under conditions such as these, the accumulation of numerical
errors may begin to influence the results. A comparison be-
tween the integral and the approximate sing differential solu-
tion results was not included because the differences between
the exact and approximate differential solution results are
again so small as to be negligible.

The final item meriting discussion is the length of the time
increment used in each of the formulations. Unlike the prior
results, some differences do exist between the maximum allow-
able time-step increments for the integral and differential for-
mulations. Additionally, the allowable time-step increment for
the integral formulation exhibits a higher dependence on the
actual angle of rotation than does the differential formulation.

In general, a relatively small time step increment must be
used with the integral solution methodology. For example, the
results previously presented typically employed a 0.01-time-
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step increment. As the length of this time step is increased, the
accuracy of the solution decreases and tends to underpredict
the deflection. This convergence “from below™ is not surprising
since the convolution integral is approximated as the sum of a
finite number of terms.

In contrast, much larger time-step increments were used with
the differential formulation. This is principally attributed to the
high accuracy provided by the Runge-Kutta integration rou-
tine. Most of the results provided were developed using 2 0.10
time step. The use of even larger time steps was also examined.
It was found that time increments four to five times greater
than 0.10 could be emploved without significant changes in the
calculated results. Additionally, the allowable length of this
time-step increment tended to be rather insensitive to the angle
of rotation. The allowable time step for the integral formula-
tion, on the other hand, exhibited a high level of sensitivity to
the angle of rotation. Larger angles of rotation required signifi-
cantly shorter time steps for accurate results to be obtained.

These factors combine in a rather interesting manner with
regard to which method of analysis is computationally more
efficient. Typically, for the analysis of short periods of vis-
coclastic deformation, the integral solution method was two to
three times faster than the differential method. This is at-
tributed to two factors. The first is the comparitively slow
Runge-Kutta integration procedure used in the differential for-
mulation. For a short period of viscoelastic deformation, the
calculation of the convolution integral of the integral formula-
tion, requiring simple summation of a limited number of terms,
can be performed much more rapidly.

The second factor is that the fixed-point iteration scheme of
the integral formulation, although requiring more iterations
than the Newton method, is also performed more rapidly since
it is simply an algebraic operation. The Newton method, in
contrast, requires inversion of the matrix, premultiplying the
vector of trial function corrections, and then numerical evalua-
tion through solution of the system of equations. Even for just
a 10-element beam, this process is slow in comparison to the
fixed-point iteration.

However, as the length of the period of viscoelastic deforma-
tion increases, this relative speed relationship reverses. Eventu-
ally, the differential formulation begins to generate solutions
more rapidly than the integral method. In the example problem
previously described, this generally occurred approximately be-
tween the second and third time constants. The reason for this
change is directly related to the computation of the convolu-
tion integral of the integral technique. As time increases, the
number of terms in the.summation increases linearly. This, in
turn, increases the number of algebraic operations that must be
performed and therefore linearly increases the time need for
each complete computation. In contrast, the speed of the
Runge-Kutta integration routine is virtually independent of
time. Thus, the continually increasing computational effort re-
quired in the integral technique eventually exceeds that need
for the differential technique. This reverses the relative speed
relationship.

Conclusions

Based on the results reported herein and elsewhere,'? it is
concluded that the differential formulation procedure pre-

J. M. STUBSTAD AND G. J. SIMITSES
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sented can be employed for the analysis of quasistatic non-
linear one-dimensional viscoelastic problems. This conclusion
is based directly on the high level of correlation between results
developed using this formulation technique to those obtained
with the previously published integral method for solution of
such problems. Additionally, it is observed that both of these
methods exhibit exceptionally similar accuracy characteristics
with regard to the number of elements employed in the approx-
imation. For both, a relatively low number of elements can be
used without engendering any significant errors.
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CREEP ANALYSIS OF BEAMS AND ARCHES BASED ON A
HEREDITARY VISCO-ELASTIC-PLASTIC CONSTITUTIVE LAW

J. M. Stubstad and G. J. Simitses
Georgia Institute of Technology
Atlanta, Georgia

ABSTRACT

An analytic study of planar beams and arches subjected to signifi-

" cant thermal cycling from ambient temperatures up to 800%C is presented.

In the study, a recently developed unified nonlinear hereditary type of vis-
coelastoplastie constitutive law is employed to characterize the time- and
temperature-dependent properties of a typical aerospace alloy, Hastelloy X.
The results from this work demonstrate that a strong interaction
exists between the backsiress variable of this patticular constitutive law
.and the lime-dependent stress distribution produced by the geometry of
the deformation. Effectively, this interaction tends to control, in a highly
nonlinear manner, the creep-ratchetting response of the beam and the arch.
An unexpected consequence of this is that temperature gradients in the
thickness direction, a factor normally neglected in most studies, tends to
exert an important influence on the response during thermal cycling.

NOMENCLATURE

a load eccentricity
A cross sectional area of beam or arch
b  width of beam or arch
&ij inelastic strain tensor
d  deformation vector for points on the centroidal axis
E  Young's Modulus
Eo, E1, Ey 13ero, first and second moments of the elastic modulus - -
across a cross section, respectively
ga» Ga  base wectors for undeformed and deformed configurations
gag, Gas  metric components of the undeformed and aeformed

configurations
A depth of beam or arch
kA =+ %E

K drag stress
K., K3 coostitutive law constants
ny thru n7  constitutive law constants
m, n  constitutive law exponents

M, N moment and force resuitants
M., N, eresp strain moment and force pseudo-resultants
My, No  thermal strain moment and force pseudo-resultants
p  pressure load ’
P,V axial and transverse force resultants
Q(t), Y(t) constitutive law functions
r, R position vectors in undeformed and deformed configurations
#, 7 coordinates along length and depth directions
s;; componenls of the deviator stress tensor
t,n, k triad of unit vectors for the undeformed configuration
T, N, K triad of unit vectors for the deformed configutation
i time
uw, w axial and transverse displacement of the centroidal axis
a coefficient of thermal expansion -
€, centroidal axis strain
€y strain tensor component
© change in temperature
x initial curvature of the arch
A, p  Lamé constants
47} siress tensor component
¢ angle of rotation of cross section
fl;;  backstress

INTRODUCTION

It is well known that metal alloys can undergo transitions in behavior
as temperature increases. Commonly, for loading substantially below yield,
the elastic response observed at room temperature generally gives way to a
time-dependent viscoelastic response at somewhat elevated temnperatures.
Further increases in temperatuce, however, introduces the potentinl for sud-
den “rapid” or plastic type deformation. Such transitions can significantly
shorten the useful life of the stzuctural element and generate the possibil-
ity of a sudden unanticipated failure. Consequently, for many years the
acrospace and nuclear power industries, where clevated temperature oper-
ating environments abound, have had a continuing interest in predicting
the behavior of metallic structural elements subjected to such conditions.

Eacly investigators [1-3] generally focused their atlention on the be-
havior of structural components subjected to conditions of constant load at
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constant uniform elevated temperatures. Many of these studies employed
simplified analyses to improve mathematical tractability. Additionslly, “ex-
petimentally based ¢quation of statc™ type constitutive laws were often used
to express the nonlinear clevated temperature time-dependent behavior of
the material. A summary of many of methods developed and key findings
obtained is provided by Hoff [4].

These efforts answered many of the questions regarding elevated tem-
perature creep buckling. However, they were not able to satisfactorily
describe the creep ratchetting behavior resulting from thermal eycling at
elevated temperatures. Consequently, it was not until Miller (5] and Ed-
munds and Beer [6], both of whom considered nuclear pressure vessels, that
this particular form of behavior was specifically addressed. Subsequently,
Bree [7,8] investigated basic factors which determine when this type of re-
sponse could occur. These studies led to experimental investigations and
other analytic studies to explore vatious aspects of the phenomena. The
works of Conway et. al. [9], Corum [10,11] and Mukhejeree, Kumar and
Chang [12] provide a representative sampling of these efforts.

However, the greatest concentration of effort has been directed to-
ward improving the capability to predict the elevated temperature behav-
jor of metals. The contributions of Hart [13,14], Pointer and Leckie [15],
Pugh [16-18], Kremp! {19], and Walker and Kremp! [20], to name of few,
provide a dzamatic illustration of the intensity of these efforts to develop ad-
vanced eonstitutive models. Yet, as pointed out by Corum and Sartory [21],
an equation of state approach to constitutive modeling is still generally used
in design situations. However, as Pugh (18] has noted, the néwer iypes of
unified constitutive laws, where inelastic strain is not divided into distinct
creep and plasticity components, can provide an alternate approach.

Consequently, one of the aims of this study is to examine the useof a
typical unified constitutive model in an analysis of the behavior of structural
elements subject to thermal cycling from an elevated ambient temperature.
The specific law which was selected is one developed by Walker [22] to
model the time- and temperature-dependent behavior of Hastelloy X, an
alloy routinely used in the aeropsace industry.

The study results indicate that, with this particular constitutive law
and material, an implicit interaction exists between the stress in the mem-
ber and Lhe backstress of the constitutive law. This interaction strongly
influences the ultimate response. This result is significant for two reasons.
First, because saturation of the backstress of this constitutive law can lead
to plastic response, it indicates that the ultimate teliability of any predicted
tesults rests strongly upon the accuracy with which the backstress growth
law parameters have been determined.

Additionally, this aspect produces the rather interesting result that,
due to the strong temperature dependence of the material constants of
the law, temperature variations in the thickness direction greatly influence
predicted response. This is significant for any analysis since thc influences
of such temperature variations are generally neglected.

MATHEMATICAL FORMULATION

To focus principally upon the interaction between the response of
the structural element and the peediction of thermal dependence of the.ma-
terial, the problem is formulated within the context of a simplified beam
theory. Consequently, it is assumed that the beam or arch deforms in accor-
dance with the Euler-Bernoulli hypotheses. As such, cross sectional planes
normal to the centroidal axis in the undeformed geometry are assumed
to remain plane and normal in the deformed state. Similatly, extensional
straining in the thickness and depth directions are neglected Thus, based
on the geometry illustrated in Fig. 1, the position vectors r and R, where
R=r,+d+ N (1)

r=r,+m and

are employed to locate a typical point on an arbitrary cross section in the
undeformed and deformed configurations, respectively. Note that n repre-
sents the coordinate in the normal direction. Also, lower case and upper

case symbols are employed to denote quantities teferred to the undeformed
and deformed configurations, respectively.

Base vectors for the reference and current state, ga and Gg, respec-
tively, are defined by

- 8a = g—: and G, = 3—1{- where o=, (2)
Consequently, the deformation vector which translates a point from the
undeformed to deformed configurations, denoted as d, can be expressed ss

d + 7N = (u + nsing)t + (v + ncosg)n (3)

where u and w represent axial and transverse displacement functions for
points on the centroidal axis, respectively. Substitution of Eqns. (1) and
(3) into (2), followed by differentiation and subsequent employment of the
Fernet-Serret formulae and the strain definition,

1
Yap = a(Gcﬁ - gup); where gap =Ba®8s ., Gap = GaeGp (4)

yields the strain expressions

Voo = ;{(l-}-—Z—j—-}-xw%—nkcm¢)’+(aa—':’—xu—qk5in¢)’-(1+mc)’} (5a)

T = ;{(1 + g—‘:+xw+nkcos¢)sin¢+(%—f— — ku—nksing)cosg} (50)
and

(5<)

In these, k = x + 8¢ /88, where k denotes the initial constant curvature of
the arch and ¢ represents the angle of rotation of the cross section.

From the Euler-Bernoulli hypotheses, the shear strains must vanish.
Consequently, from this requirement Eqn. (sb) yields

Yan = %{sin’cﬁ-}»cos:tﬁ- 1} =0

Sw
(g, (0
(1 + g—: + nw)

tang =

Therefore, employing the definition

8u 3 Sw 2 -
1+2¢ = (1+ 57 +nv) + (57 — ) (M

unceformed

Figure 1. Geometry of Deformation.
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and Eqn. (8) it is telatively easy to show that

Sw Su
- (= - xu) 1+ — +xw
sing = —0s _— and cos¢= 7 E— (8)

V1t 2, 1+ 2,

Thus, expanding Eqn. (5a) and employing Eqns. (7) and (8) yields

] 184,38
7,,=c.+n{m/l+2¢.—n+ﬁ+2c.-£}+n’{n+ 5-5% a—f )]

From the above it is clear that ¢, represents the strain induced along the
centroidal axis. Since, for a thin arch or beam, the last term of Eqn. (9)
should be small in compatison to the others, it may be neglected. Similarly,
additional simplifications may be obtained for the case where the centroidal
axis steain is sufficiently small so that it may be neglected in comparison to
one. Based on these assumptions, Eqn. (9) simplifies to the standard form

8
Yas z‘o""’B—f (10)

Equilibrium equations ate obtained through application of the Prin-
ciple of Virtual Work. Stress resultants, N and M, are defined such thai

N=fadA and M=/ﬂ;dA N £ 81
A A .
Note that
85
5p = a:l + kv (12a)
85
be= a:’ - kb, (128)

where §¢ and 8¢ denote the incremental changes in rotation and centroidal
axis strain resulting {rom the deformed configuration axial and transverse
displacement changes, §v, and §v;, respectively.

Consequently, from the Principle of Virtual Work,

3
§W.oe = [M64 + Nbvy + Qéva]? + / —p*Susds (13)
| .

Expressing the first term on the right hand side in terms of an integral over
the length and then combining that result with the work term yields

86v,

1 8M 854 ON 86v, 8Q
= g+ M —+— pidadiod W Shatin. —p*Sua] d
Wt /‘ [a. R A P A TRALAA P m] ds

(19)
Therefore, employing Eqns. (12} and noting that terms multiplying the
virtual displacements §vy, §v; and 8¢ must vanish identically yields, after
eliminating the shear resultant, the equilibrium equations
hN—?LM-=p' and — +k—=0 (15)
847 Os 8s
with the associated boundary conditions at # = 0,1

N=N*' or Sy =0
o—hl = —Q' or 601 =0 (16)
8s .
and
M=M' ot =0

where N*, Q°, and M* denote the axial, shear and moment resultants ap-
plied a¢ the ends of the arch, respectively. N

Expressions for the force and moment resultants, N and M, respec-
tively, are obtained from the constitutive law. A unified hereditaty visco-
elastic-plastic law developed by Walker [22] to characterize the time and
tempetature dependence of Hastelloy X is employed. The selection of
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Figure 2 Ex:eraal Forces and Momesats Acting ou the Arc3.

Walker’s functional theory, a highly generalized representation for a three
parameter viscoelastic solid, was based on three considerations. First,
from & strictly practical point of view, a substantial body of experimental
work [22-24] had been performed to establish the temperature dependence
of the constitutive law parameters for a wide range of temperatures. These
efforts included s validation which examined the predictive capability of the
law through a comparison of analytical and experimental results for time
variable thermo-mechanical load cyeling of uniaxial specimens.

A second factor which favored selection of the Walker law was that it

- is able to reproduce forms of classical behavior as limiting cases. For exam-

ple, saturation of the drag stress produces an effect equivalent o isotropic
hardening of & material. Similarly, saturation of the backstress produces an
effect equivalent to kinematic hardening. Finally, the associated laws which
govern the evolution of the state variables provide for the opportunity to
include effects related to both dynamic and static thermal recovery.

The final reason for selection of the Walker law is that it can be ex-
pressed in both differential and integral formats. For this particular study,
the differential format of the law was found to be the most convenient.
However, it was hoped that the availability of an integral format would
provide, at a future date, the opportunity to extend some prior work in-
volving kinematic bounding of noalinear integral formulations [25] to also
.include some form of constitutive bounding.

The general integral form of Walker’s functional theory has been
provided in Appendix A. That appendix also contains a derivation of the
differential form from the integral format. It should be noted that, in the
modeling of the elevated temperature behavior of Hastelloy X, additional
simplifications in the form of the law were possible. These simplifications
resulted from the fact that, for Hastelloy X, a number of matetial conslants
are zero over the entire temperature range. T

Due to these simplifications, the differential format of Walker’s func-
tional theory, for one-dimensional loading of Hastelloy X, has the form

€, = sign{o — ﬂu)(ebs—(’-}—;ﬁ-‘—))" (17a)
o R PR 1 8ny .
n= “+n3c‘—(ﬂu-ﬂ“)((}-— ;‘:3—9—9) (175)
i, = b (119)
K=K; (17d)
and
G = ngabs(e,) + u.(abs{ﬂu})"“ (17¢)

Finally, since the time rate of change of temperature is relatively
Jow in the sample problems, all terms where 6 appeared were assumed
to be insignificant and therefore neglected. Note that this provides some
minor simplifications to Eqn. (17b) and makes the reference backstress,
12, independent of the time rate of change in temperature.

The law is based on an additive decompostion of the strain into
elastic, thermal and inclastic components, ¢, € and ¢, respectively. Thus,
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¢,+qaa-;f=¢.+eg+t‘ (18)

For the state of one-dimensional loading considered, this yields

o= E(¢.+n%% —ep—t) (19)

Therefore, integrating this expression over the cross section and employing
the fotce resultant definition, Eqn. (11}, yields

N = E.,c.+El§—f—N.—N‘ {20)

where Eg and E, denote the zero and first integrals of the elastic modulus
over the cross section and Ny and N, represent “pseudo-resultant™ type

- quantities defined as

N;:/ E¢pdA  and N,:/ Ee.dA (21)
Ja A

Note that the first integral of the elastic modulus over the cross section, Ey ,
does not necessarily vanish since the elastic modulus is a function of the
temperature, which is not necessarily constant across a cross section. An
interseting aspect of this is that it induces a form of bending-stretching
coupling {see also Eqn. {22)} similar to that of a laminated composile
material. Finally, it should be noted that, although the quantities defined
by Eqn. (21) have the units of a force resultant, these definitions are merely
employed to simplify subsequent expressions.

Multiplying Eqn. (19) by the coordinate, 7, integrating over the cross
section and employing the moment resultant definition, Eqn. (i2), yields

M=E1!.+Ez%-f-—M‘—M. (22)

where E; denotes the second integeal of the elastic modulus over the cross
section and the “pseudo-moment” resuliants are defined by

M.:/ nEepdA  and M,:/ nEe. dA (23)
. A A

Consequently, substituting Eqns. (20) and (22) into Eqns. (15) yields the
general governing relations

a_é' 8¢, 8¢,

¢ 8‘
kEoe,+kE1 B -E,F-E,ﬁ =p +k(N.+N.)+E;(hL+M.) (24)

and

(E +kE)Dfl+(E + kE: )ﬂ-—-‘?—(N + Np) + k(M + My} (és)
° Ry 1 iy Sl A R ’ € .

In the development of these relationships, it is assumed that the moments of
the elastic modulus, Eg, E; and Ej, are constant with respect to the axial
‘coordinate. This implies that these quantities are independent of stress or
strain and that the temperature is constant along the length direction.
Equations (24) and (25) represent a pair of interrelated spatially de-
pendent nonlinear differential relationships which describe the deformation

of the beam or arch. In their present form, they are stated in terms cf'the
stzain along the centroidal axis and the rotation of the cross section. These

{wo quantities, in turn, are interrelated through the axial and transverse
displacements of the centroidal axis. Substitution of the appropriate ex-
pressions for the centroidal axis strain and czoss section rotation ultimately
results in a set of equations, one of third order and the other of fourth
order, in terms of these displacement functions.

Due to the significant nonlinearity of these equations, a numerical
method of solution was selected. The pariicular method employed is an
adaptation of Newton's method for the solution of nonlinear algebraic equa-
tions {26]. The basic approachisan iterative procedure where a “closc” trial
solution is directed towards the actual solution. Note that this method nei-
ther guarantecs convergence toa solution nor that a solution is unique.

The basic methodology is to expand a nonlinear differential term

_ such as dX™dY", where dX and dY represent differentials of the functions

X and Y and m and n represent integer exponents, into the sum and prod-
ucts of trial solutions X and ¥ and corrections of the form AX and AY,
Consequently, substituling X = X +AX and Y=Y + AY yields,

dX™dY™ = dk™d¥™ + mdXm-td¥ d(aX) (26)
+ ndX™a¥"-td(AY) + £(X, ¥)O[aX, AY]
where f(X, Y)O[AX, AY] represents » nonlinear function of X and ¥ of
second and highet order terms in AX and AY. Provided the trial solution
is close to the true solution, these higher order terms should be small in

“eomparison to the linear terms and thus may be negiected. Consequently,

the nonlinear term may be closely apptoximated by the linear form

dX™dY" & dX™ dT" + mdX™-1dV d(AX) + ndX™ AV TTd(AY) (27)

With this technique, the nonlinear differential equations are approxi-
mated in terms of linear differential equations for the cotrections to assumed
trial functions. These coupled differential equations are then converted (o
& set of coupled algebraic relations through the use of central difference
formulae to apptoximate the derivative terms for the corrections ta the as-
sumed deflections. Appendix B provides, for example, the general finite
difference expressions developed for the initially circular arch.

A matrix iteration procedure is employed to refine an assumed trial
solution. Each sucessive set of corréctions is used to update the trial solu-
tion until convergence is obtained. Tests for such convergence included the
consideration of the magnitude of each set of corrections as well as the over-
all accuracy for which each of the individual nodal equations was solved.
In this regard it is noted that an equivalent degree of coupling did not exist
between the in-plane and transverse equations of equilibrium. Typically,
the accuracy of the solution of the transverse equation of cquilibrium was
strongly dependent upon the transverse deflection but only weakly influ-
enced by the in-plane displacement. Conversely, the in-planc equation of

equilibrium was strongly dependent upon both the transverse and in-plane
deflections. Consequently, the rate of convergence of the transverse nodal
equations was much more rapid than that of the in-plane ones.

In contrast to the treatment of the equations of equilibrium as a
typical boundary value problem, the solution for the changes to the moment
and force resultants between successive states of quasi-static equilibrium is
handled as an initial value problem. As such, a fourth order Runge-Kutta
integration routine was employed to integrate the constitutive law at a
preselected set of points across the cross section for each axial node used in
the finite difference mesh. In this process, it was assumed that the change
in actual stress at each of these points could be approximated as a linear
function of time over a given, reasonably short, time interval.

Once the “trial siresses” at the end of the time interval had been ap-
proximated, a Newton-Cotes quadrature formula was used to numerically
approximate the force and moment resultants. These were then employed
to compute the deflections for this new state of quasi-static equilibrium.
From the deflection solution, & revised stress field couid be ealculated and
compared with that which had been employed to integrate the constitutive
law. The process was repeated if more than nominal differences existed
between the assumed and computed changes in stress. Fot this, the linear
approximu-.ling functions wete adjusted based upon the computed stress dis-
tribution. Otherwise, the results were accepted and the analysis proceeded
on to the next time increment.

This procedure was found to work very well after the first few time
steps. Most of the computation effort was expended in the solution of the
“boundary value” part of the ptoblem and not in the iteration for material
behavior. Principally, this was due to the fact that the rate of change in
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actual stress was reasonably constant and was therefore easy to estimate
between successive increments. This began to break down, however, when
the behavior of the material began to resemble a plastic response. Under
these conditions, the rate of change in actual stress would change rapidly
even over very shorl time intervals. Consequently, accurately forecasting
its rate of change was difficult. Thus, a greatet number of iterations was
needed to close the numerical loop.

NUMERICAL RESULTS

The problems considered are an eccentrically loaded cantilever beam-
column and a simnply supported pressure loaded shallow circular arch. In
both cases, the behavior of the structural element is examined for constant
loading at constant temperatures of 400, 600 and 800 *C and with sinu-
soidal variations about the temperatures of 400 and 600 ° C. Simultaneous
variations in loading and temperature are not examined. However, the
potential influences of time-invariant temperatute gradients in the depth
direction are examined for both constant and variable temperatures.

The beam-column considered is 30.48 cm long having a square cross
section of 1.27 cm depth and thickness. The eccentric load is applied 0.3048

c¢m below the centroidal axis yielding an eccentricity ratio of 0.01. The
direction of the load is assumed to remain constant. Twelve axial nodes
are used to model the beam-column. Additionally, a five point transverse
grid is employed at each axial node to approximale variations in stress
and strain across the cross section. One transverse grid point is located
at each extreme surface of the cross section and one is positioned on the
centroidal axis. The remaining two points are spaced equidistantly between
these three points. It should be noted that the results from this “twelve
axial node five grid” model compare favorably with results obtained using
greatet numbers of axial nodes and transverse grid points.

The circular arch examined is a 8.59 deg. segment of a circle. Physi-
cally, the arc length of the arch is 22.86 cm with an initial radius of curvature
of 152.4 cm. For this relatively shallow arch, the rise of the centroidal axis
is approximately 0.43 cm. Unlike the beam-column, the arch has a rect-
angular cross section 0.51 cm in width and 0.38 ¢m in depth. The arch is
divided into fourteen segments for the numerical model. Again, a five point
transverse grid is established at the location of each axial node. Similar
to the beam-column, the results obtained with this “fourteen segment five
transverse grid model” compare favorably with models employing greater
numbers of both. Ilusirations of the geometry of the beam-column and
arch models are provided in Figs. 3 and 4.

Note that the dimensions selected for these sample problems are not
based upon the consideration of “typical” structural clements. Instead, the
dimensions are specifically chosen to accelerate the onset of time-dependent
behavior. The purpose of this is to minimize the length of the initial “sta-
ble” response period thereby reducing the overall magnitude of the compn-
tational cflort. In general, a “realistically” sizsed structural element would
be appreciably stiffer and thus provide a much longer period of stable re-
sponse. However, other than this extension of the “stable” useful life, the
behavioral characteristics of such “realistic” structural elements would be
highly similar to those of the example problems.

Finally, before proceeding with a detailed discussion of the numerical
results, some introductory remarks on the principal factors which determine
the form of the response merit consideration. Examination of Eqn. {17a),
for instance, reveals that the inclastic strain rate is determined by the rela-
tive magnitudes of the actual stress and the backstress. The inelastic strain
rate changes whenever the rate of change in actual stress varies from the
rate of change of the backstress. In some situations, the rates of change
of actual stress and backstress tend to equilibrate yiclding a relatively con-
stant differgnce. With this, the rate of inclastic straining tends to decrease
to a neazly constant value. This behavior might be characterized as initial
“primary creep” transitioning lo “secondary” or “steady” creep .
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Figure 3 Ecceatrically Loaded Cantilever Beam-Column.

Fignre 4 Axial Finite Difference Mesh for the Arch

In other cases, the rate of change in stress increases much more
rapidly than the backstress. Provided the magnitude of the difference
between them is not excessive, this produces a response akin to that of
accelerating or “terciary” creep. The final possibility occurs when the dif-
ference between the actual stress and the backstress is very large. When

_ this happens, the exponential nature of Eqn. (17a) creates a situation where

inelastic strain rate tends to follow stress increment directly. Consequently,
in the limit, the law exhibits a behavior similar to incremental plasticity.

Thus, it should be evident that the crucial factors in the analysis
are those which determine how rapidly the actual stress and the backstress
change with time. The most significant factors were found to be a geo-
metrical effect related to the bending moment and the growth law for the
backstress. Consequently, the overall response of the strnctural element
was determined by the relative interaction between these effects.

The geometric effect occurs in both the beam-column and the arch.
However, it is more easily visualized with respect to the beam-column geom-
etry and therefore is described in that context. Essentially, the maximum
(in magnitude) stresses in the beam-column are determined by the mo-
ment created by the end load. Transverse deflection of the beam-columa,
increasing the moment arm of the eccentric load, increases the magnitude
of these stresses. However, tending to counterbalance this effect is the end
rotation. Because the line of action of the load remains constant, end ro-
tation reduces the effective moment arm created by the eccentricity of the
load. Thus, this tends to eeduce the magnitude of the end moment.

In a prioe study [25] it was found that the relative significance of these
two influences was related to the load eccentricity and the time-dependent

characteristics of the matetial. For an eccentricity of the order employed -~

in this study, these two opposing effects can approximately counterbal-
ance one anocther only when beam deflection is relatively minor. f!eyond
this threshold, the transverse deflection effect predominates und the end
moment inherently increases. Therefore, the magnitudes of the maximum
stresses increase with deflection and thus also with time. Lo
In contrast, for slowly varying temperature changes, allowing the
© terms of Eqn. (17b) to be neglected, the evolution of the backstress is
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governed by a relationship of the form
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My = apd - (A -Q;‘)¢< oo (28) - P/F+0.60
= From Eqn. {17¢), it should evident that G must be non-negative. Thus,
the magnitude of the rate of change of backstress depends upon the signs
nelastic strain rate and the difference between the

1.04

it

and magnitudes of the i
current and reference backstress. Because the actual stress is only indirectly

coupled to the backstress, through the deformation and the growth laws,
an increase in actual stress does not necessarily generate an equivalent
incremse in backstress. Thus, the quantities in Eqn. (28) need not change
in equivalent or proportional amounts. As such, the rate of change of

1.02

wiL 1)/ W(L,0) -

backstress may increase, decrease or remain relatively constant, thereby .

providing & wide variety of possible results. 100

The Beam — Column at Constant Temperature 1 L L \

The time-dependent deflection of the beam-column at constant tem-
perature provides the simplest demonstration of these effects. Figures 5, TIME, hr
6 and 7 illustrate the time-dependent end deflection of the Leam-column .
under constant load at temperatures of 400, 800 and 800 * C, respectively. Figure 5 Beam-Column Defleczion at 400 °C.
The loading is expressed in terms of the ratio of the applied load to the
~ Euler load for a perfect configuration, P,, where Py = x}E1/4L*. Note 1.08 T T T T
’-[ that the Euler load is a function of temperature due to the temperature
It dependence of the elastic modulus. Also note that the relative transverse
i deflection (i.e.: the vertical axis) represents the ratio of the time-dependent
- defiection to the initial elastic deflection. Thus, the results indicate the .06 I
'-1 relative increase in deflection produced by inelastic straining. C B
VExccpt for the lowest loading at 400 © C, the 400 and 600 ° C beam-

P/P,: 060 —

T column results exhibit a short initial settling period followed by a virtually 104 F . B
~ayp Tinear increase in transverse deflection with time. This type of behavior is .

T synonomous with a response of primary creep transitioning to secondary
creep. Not unexpectedly, the higher loadings produce the greater rates of
increase. This infers that under these ¢onditions, the difference between .02
the actual stress and the backstress must remain nearly constant with the
greater numerical differences occurring at the highest loadings.

-y This hypothesis is confirmed by in Fig. 8, which illustrates the differ-
ence between the maximum (in magniiude) actual stress and the backstress : .00

T for the 400 *C case.f Note that, due to the combination of bending and . | 1

wiL,1)7wiL,0)

axial loading, the maximum (in magnitude) actual stress occurs in the ex- ) 0 5 10 15 20 25
treme fibers adjacent to the wall on the same side of the centroidal plane TIME, hr
as the applied end load.

Except for some slight initial variations, the difference between the
actual stress and backstress remains virtually constant. Thus, the right-
hand side of Eqn. (17a) effectively is constant. This yields a constant
B relatively low rate of inelastic straining. Since this Jow rate of inelastic
"'ﬂ straining does not significantly alter the deflection of the beam-column,

significant changes in the actual stresses do not oceur. Concurrently, the
o low rate of inelastic straining yields a low the rate of change in backstress. .
- Thus, the combination of these eflects maintains an approximately consiant
difference between actual stress and backstress.
T In contrast, virtually all levels of loading at an 800 ¢ C temperatuze
T _ produce an accelerating rate of transverse deflection. Only the lowest load
% produces a steady creep response; all higher loadings pi-oduce an accelerat-
ing rate of deformation. At the two highest load levels, the beam-column
ﬂ' deflects so rapidly it could be considered to have failed almosi instanta-
neously. Of course, in comparing results between these different cases, the
significant differences in the time scales should be kept in mind. At the
Jower temperatures, elapsed time can be expressed in hours. At the highest
‘ temperature, elapsed time must be indicated in seconds.
Why the 800 °C resulis are so different from those at the lower

Figure 6 Beam-Colunn Deflection at 600°C.’

0.50
40 r 0.45

wiL 1)/ W(L,0)

0 400 800

temperatures is directly attributable to the difference between the actual TIME, sec

t Results for the difference between the maximum (in magnitude) ac-
tual stress and the backstress at a 600 ® C temperature are not included
since they are virtually identical to those of Fig. 8 and are availahle else-
where [27]. The difference tends to remain relatively constant following a 6
short initial period with the greater differences at the higher foads.

—

Figure 7 " Beam-Columa Defiection at s00°C.
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Figute 8. Difference between actual stress and backstress

for the 400° C beam-column.

stress and the backstress, illustrated in Fig. 9. At the lowest load, the initial
relaxation is followed by a period of constant difference between the actual
stress and backstress. Thus, the increase in actual stress from transverse
deflection is counterbalanced by the concurrent growth in the backstress.
Higher levels of loading alter the relative rates of growth. At higher loads,
the rate of increase in actual stress far exceeds that of the backstress. The
inelastic strain rate increases thus increasing the rate of deflection which,
in turn, further inczeases the rate of change of actual stress. Thus, the
process reinforces itsell accelerating the approach to failure.

Before proceeding to the arch, a few words concerning the initial
relaxation are warranted. The “relaxation” process is a combination of
effects. First, the inclastic deformation tends to limit the raie of increase
in the stresses at the extreme fibets. To maintain equilibrium, load bearing
responsibility is transfered toward the centroidal axis. Due to the relatively
low initial magnitudes of these stresses, this normally does not produce any
significant inelastic staining near the centroidal axis.

The exception occurs with the behavior demonstrated in the 800 ° C
case. The rapid inelastic straining at the exireme fibers significantly in-
creases the magnitudes of the stresses throughout the central core. Thus,
appreciable inclastic straining occurs over the majority of the cross sec-
tion. With this, inelastic straining along the centroidal axis also begins to
strongly influence the overall response. In fact, the form of “failure” whick
results might be characterized as a viscoelastic analog lo a “plastic hinge.”

The Arch at Constant Temperature

The behavior of the pressure loaded shallow arch at constant tem-
peratures of 400, 800 and 800 *C is generally similar to that of the beam-
column. Figures 10 and 11 illustrate the transverse deflection at the center
of the arch at 600 and 800 * C. Note that the critical load for the arch is
estimated to lie between 179 to 188 kPa (26 to 27 psi) for these tempera-
Lures.

Again, the temperature increase from 600 to 800 * C reduces nseful
life by more than an order of magnitude. This is appatent from the signif-
jeant difference in time scale between the figures. The differences between
the actual stress and the backstess for these arch examples are similar to
the those for the beam-column and thus have not been included.

One factor common to both temperatures is the sensitivity to load
magnitude. Note that only a slight increase in pressure can substantially
alter the character of Lhe response. The reason is that in the arch, the cen-
troidal axis stress is always significant due to the curvature and boundary
conditions. Thus, it always influences behavior. “This stressing induces a

“re-

high rate of compressive inelastic straining along the centroidal axis
ducing” the nominal arc length of the arch. This geometric change tends
to accomodate additional transverse deflection through reduction of both
the “nominal” curvature and the “unloaded” are length of the arch. Note
also that, unlike the beam-column, where such an effect is localized near
the wall, this centroidal axis straining occurs over most of the central sec-

tion of the arch. Thus, the “failure” zone tends to be distributed and not
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Figure 9. Difference between actual stress and backstress
for the 800° C beam-column.

localized. As such, the sudden rapid increase in transverse deflection which
occurs with the beam-column is not as pronounced in the arch.

The Influence of Time — Invariant Temperature Gradients

The effects of a time-invatiant, linear (in the depth direction) temper-
ature gradient on the constant temperature response are considered next.
This type of temperature gradient is associated with the steady state flow of
heat through the depth. For simplicity, the gradient is assumed to temain
constant with respect to the length of the element. ’

For bookkeeping purposes, gradients where the temperature is great-
est at the upper surface and lowest at the bottom surface are considered
to be “positive.” Conversely, the case where the greatest temperature is at
the bottom surface is denoted as a “negative” gradient. Note that all the
gradients were established so that the temperature of the centroidal axis
would remain at the nominal case temperatiire. Thus, & +10 * C gradient
for & 400 *C beam-column implies that the upper, centroidal and lower
surface temperatures are 405, 400 and 195 ® C, respectively.

This type of temperature gradient introduces two effects. First, due
to the temperature dependence of the elastic modulus, the first integral of
the elastic modulus over a cross section does not vanish. This produces a
weak level of bending-stretching coupling. The second effect is that such
gradients cause thermal bending of the element. Positive gradients cause
downward bending theteby augmenting the mechanically induced deflec-
tion. Conversely, & negative gradient reduces the load induced bending.

It was found that neither of these exert a majot influence on the con-
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stant temperature behavior. Figure 12, for example, illustrates the typical

deflection resulting from a depth direction
temperatute gradicnts for the 400 * C beam-column at a load ratio of 0.50.
Note that a temperature difference of +10 or —10 *C through the 1.27
_column reptesents a gradient of £7.87 ° C/em. The largest
§ * C, cotresponds Lo a heat

relative increase in transverse

em thick beam
temperature difference considered, namely £ 2
flux through the depth on the order of 400 kW/m’ °C.

As noted above, Fig. 12 provides the relative increase in deficction.
This is the ratio of the time-dependent deflection for a given temperature
difference to the initial elastic deflection of the uniform temperature beam-

column. Thus, this ratio indicates the net amplification tesulting from

inelatic and thermo-elastic effects.

Temperature differences less than 5 * C had virtually no influence on
the deflection of the constant temperature beam-columns. The +10°C and
Iarger temperature differences did, howevet, have some impact on transverse
Gradients of these magnitudes generated observable increases

deflection.
g. Figure 13 illustrates this

in the deflection after several hours of loadin
with results obtained for a 8060 °C beam-column with an applicd load ratio

of 0.50. The solid line represents the initial ratio of end deflection with
a thermal gradient to that of the sero gradient case. The dashed lined
provides the same ratio after 12.5 hours of loading. Note that although
the deflection of the beam-column is modified due to the presence of the

179 kPa
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Figure 10. Center deflection for the 600°C arch.

thermal gradient, the magnitude of this change is not sufficient to alter
the occurance of the gencral behaviors illustrated in Figs. 8 through 11.
These results are typical of the behavior obsetved for the other constant
temperature beam-column and arch examples.

As mentioned above, the imposition of such thermal gradients also
creates some weak bending-stretching coupling in the governing equations.
This was found to be an insignificant effect. Specifically, a number of Lest
cases were examined where the coupling term, E,, was artifically set to zero.
There was no appreciable difference in the results with respect to results
obtained when the coupling term was retained. Consequently, it can be
concluded that the potential bending-stretching coupling which might be
induced by the temperature dependence of the elastic modulus is negligible.

Arch and Beam — Column Variable Temperature Behavior

The final aspect of behavior examined is the response of the arch

and beam-column under sinusoidally varying temperatures. Resulls are
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Figure 11. Cenier deflection for the 800° C arch.
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Figure 12. Influence of temperature difference on Lhe deflection
of the 400° C beam-column.

presented for both the arch and beam-column without a temperature gra-
dient in the depth direction. The combined influences of sinusoidal tem-
perature variations and a time-invatiant depth direction tlermal geadient
are investigated only for the case of the beam-column.

In the cases examined, the temperature is assumed to vAry in A sinu-
soidal manner sbout an elevated mean temperature of either 400 or 600 ° C.
Amplitudes of 50, 100 and 150 ¢ C are employed. Also, in keeping with the
use of a quasi-static anslysis, 1200 and 1800 sec periods ate employed for
the sinusoids. Sinusocidal variations about the 800 *C temperature were
not studied due to the extremely short life exhibited in the constant tem-
perature cases. :

Finally, the thermal model includes a slight initial delay between
when the load is fizst applied and when the sinusoidal temperature vari-
ations commence. With some combinations of higher temperatures and
higher loads, a step-like initial transient is generated in the constitutive
law state variables. S\iperimposing a sinusoidal temperature at the same
time that this step-like increase in the state variables occurs forces the
Runge-Kutta integration routine to employ exceptionally small time step
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Figure 13. Transverse deflection as a function of temperature
gradient for the 600° C beam-column.

increments to provide accurate resulis. However, the need to employ such
small time step increments passes almost immediately once the load in-
duced transient change has taken place. Thus, the short delay allows the
integration routine to stabilize before the start of the temperature oscilla-
tions. Typically, a delay period on the order of 80 sec is employed. Based
on a limited number of test cases, it was found that such a delay period
has no appteciable impact on the overall results.

Figutes 14 and 15 illustrate the time dependent deflection of the
arch and the beam-column, respectively, for 50 and 100 * C amplitude tem-
perature oscillations aboul & 600 ° C temperature. Note that the loading
employed in both of these cases would nominally produce a “stable” time-

dependent tesponse under constant temperature conditions. Several inter- -

esting featutes can be discerned. First, the shape of cach deflection curve is
a distorted sinusoid. The upper peaks tend to be exaggerated wheteas the
lower peaks are well rounded. Additionally, an underlying increasing trend
in time-dependent deflection can be observed in both. Specifically, both
the upper peak and lower peak deflections increase between each cycle.

200 *C pk - pk

w{L/2,1), mm

100 *C pk-pk

5 5 25 . 35
TIME, min

Figute 14, Center deflection for the 600°C arch for 50 and
100* C sinusoidal temperature amplitudes.
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0 1000 2000 3000
) TIME, sec ’

Figure 15. End deflection for the 600° C beam-column Yor 50
and 100° C sinusoidal temperature amplitudes.

The distortion of the peaks from a true sinusoid is a result of the tem-
perature dependence of the inelastic strain. During the higher temperature
portion of the cycle, inelastic straining increases due to the temper~ture
sensitivity of the constitutive law parameters. This results in a rapid in-
crease in the deflection. Conversely, the inelastic strain rate is reduced at
lower temperatures yielding less inelastic deformation during that patt of
the eycle. Thus, the behavior during the fower temperature portion of the

‘¢ycle more closely approximates that of simple thetmo-elastic deformation

where deflection follows the thermal cycle exactly.

Tables I and II summarize these increasing trends for the arch and
beam-column cases, respectively. Note that these tables present results
obtained for a variety of temperature differences in the depth direction.

Table 1. Rate of Change of Atch Deflection for Sinusoidal -
Temperatute Variations

Sine Rate of Change (em/sec)
Pressurc Amplitude 1** 1o 2°¢ 1 o 20
(kPa) *C Upper Peak Lower Peak
165 25 3.18x10°7 2.74x10-7
165 50 3.84x10°7 3.20x10-T
185 100 4.98x10-° 2.87x10-8
152 100 7.87x10-7 6.12x107

As Table Iillustrates, the magnitude of the increase in deflection be-
tween the first and second upper peaks appreciably exceeds that between’
the first and second lower peaks. Although not indicated in this or the
following table, the increase in deflection at the cycle midpoini temper-
ature falls between the values of the extremes. It should Le noted that
this unequal expansion of the thermal cycle deflection indicates that creep
ratchetting is occurring:

This table also demonstrates the significant nonlinearity involved in
this phenomena. The first doubling of the amplitude of the thermal cycle,
from 25 to 50 *C, results in only a modest increase in the peak to peak
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deflections. However, 8 second doubling, from 50 to 100 * C, increases
the peak to pesk deflection by slightly more than an otder of magnitude.
Table 11 illustrates that s similar effect for the beam-column. Note that
except for the 50 °C amplitude with no gradient, increasing the amplitude
of the theemal cycle increases the change in penk to peak deflection in a
nonlinear manner.,

Table 11 also demonstrates that the increase between consecutive
peaks has an overall decreasing trend. The absolute increase in deflection
decreases as the number of cycles increases. The canse of this decreasing
trend is attributed to the growth in backstress. Generally, the maximum
stresses do not change significantly between consecutive peaks of the ther-
mal cycle Lecause they are principally determined by the thermo-elastic
deformation. The accumulated inelastic deformation does not significantly
alter this stress distribntion. However, the amount of inelastic strain is
sufficient to create an increase in the backstress between consecutive peaks,
one which exceeds that of the actual stress. Thus, the difference between
the actual stress and the backstress decreases. In turn, this reduces the
rate of inelastic straining. Of course, this effect becomes less significant as

the backstress approaches saluration.

Rate of Change of Beam-Column Deflection for Sinusoidal

Table TI.
Temperature Variations

Sine  Temp. Rate of Change (cm/sec)

Ampl. Difl. Upper Peaks Lower Peaks

[Xo] C 1-! to znl 2nl to 3" l" to 2nd 2n1 to 3-‘
50 0 1.48x10-%  1.27x10-%  1.4Bx107* 1.27x10"*
50 +10 8.46x10-%  8.26x10-%  8.05x10"* 7.82x1078
50 +20 4.29x10-7  4.06x10~7 4.01x10-7  3.B4x10”7
100 0 1.07x10-%  1.03x10-% ° 9.83x1077 9.45x10°7
100  +10  2.21x10-¢  2.06x10~° 2.01x10-%  1.88x10-%
100 420  4.72x10°%  4.27x10-*  4.24x107° 3.86x10°¢
150 0 1.87x10"% 1.66x10-%  1.61x10-%  1.45x107F
150  +10  3.22x10-%  2.91x10~% 2.77x10-%  2.52x10"*
150 +20 5.41x10°%  4.93x10°% 4.67x10-%  4.32x10°%

The remaining influence illustrated by the data of Table I is the
effect of a time-invariant depth direction temperature gradient on the in-
elastic response. In general, the change in peak to peak deflection is signif-
icantly greater in the presence of the time-invatiant temperature gradient.
Typically, almost an order of magnitude increase in pesk to peak change in
deflection occurs for the lowest temperatute eycle amplitude. Interestingly,
the effect of the depth direction gradient becomes less significant as the
amplitude of the thermal cycle increases. :

The ultimate significance of this is whether ot not temperature gra-
dients in the depth direction are truly negligible. The data of this table
tend to indicate that the gradient may not be & negligible factor when the
magnitude of the gradient is of the same relative magnitude as the thermal
cycle. In such cases, the thermal gradient does appear to exert an appre-
ciable influence on the overall response. Obviously, this also tends Lo imply
that the impact of the depth direction gradient is potentially very signifi-
cant in Lransient cases where the magnitude of the temperature difference
through the depth can easily approach that of the gross transient change

in temperature.

CONCLUSIONS

The elevated temperature behavior of generic types of structural el-
ements fabricated from a typical aerospace alloy have been studied an-
alytically using & nonlincar kinemstic analysis and employing a recently
developed nonlinear unified hereditary constitutive law o express the time-
temperature dependence for the material. The study results demonstrate

10

that,'due to the specific format of the constitutive Jaw, the behaviozal re-
sponse of the structural element is determined principally by the difference
between the actual stress in the element and the backstress variable of the
constitutive law. The first of these, the actual stress in the element, is
basically_controlled by the geometry of deformation. However, the second
factor, the backstress, is governed by the appropriate growth rules of the
constitutive law. '

This implies that aceurate results for such an analysis can be ob-
tained only if the form of the backstress growth law and the numerical
values employed therein have been established to a reasonably high degree
of certainty. Otherwise, the prediction of the conditions under which the

"tesponse of the structural element may change from that of & “steady™ form

of creep to a rapid approach to failure could not be established with any
degree of reliability. For entirely similar reasons, the actual stresses in the
structural element needs to be'established accurately to ensure that reliable

resuits ensue.
The specific results obtained from the sample problems indicate that

a constitutive law of the type proposed by Walker has the capability o

model various forms of creep behavior. Under vatious constant load and
temperature conditions, it has been shown that the predicted response may
vary from simple primary creep-secondary creep to almost instantaneous
terciary creep. Additionally, under varying temperature conditions, the
Walker law has demonstrated the capability to predict the development of
the type of inelastic strain biasing which can produce creep ratchetting.
Assuming the Walker law and associated constants provide an accu-
rate representation of the clevated temperature response of a material such
as Hastelloy X, the sample problem results indicate that the existence of a
depth direction temperature gradient in a thin section may not always be
negligible. Specifically, under constant temperature conditions, the results
indicate that such temperature gradients do not appear to exert any sig-
nificant influence on behavioral response. However, such gradients do have
a significant impact when the. overall temperature of the element is not
constant. The existence of this type of gradient can appreeiably accelerate
the overall rate of creep. It is indicated that this specific effect is most
pronounced when the magnitude of the temperature difference through the
depth of the element is on the order of the amplitude of the gross variation
in iemperature of the element. Consequently, in addition to when such con-
ditions may exist in a “quasi-steady state” situation, Lhis implies that such
gradients may exert considerable influence in transient thermal problems.
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APPENDIX A CONSTITUTIVE LAW

In its most general integral form, Walker’s functional theory has the

format:

i) = 20,00+ 55 [ (o0 + Sutole) (Gt - sal0l0)) 37) d

+ / -aw-a (2”[@(5)12‘1

o200,
2001 ) at,
(A - 1a)

&; F[G(E)]

59 = 050+ m{O(0les () + mafO(0) / -(ae1-cn 24t ge,
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oo (s, - sEalen (0 )
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Square bracket terms, of the form p [B(¢)], ate used to denole the depen-
dence of the material constants A, g, % n, m, ny, Ry, N3, N4, As, Re, A7,
K., and K, on the temperature, O. However, for clatity, the indication of
the explicit dependence on temperature will be suppressed in the following

development.

The differential format for Walker's functional theory is obtained

through differentiating the above relations w* ‘th respect to timne. Employing
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Leibnis’s rule, dilferential formats for Eqns. (A-1d), (A-1[), (A-1g) and

(A-1h) ate readily obtained. A somewhat simplified differential format
for Eqn. (A-1b) may be obtained in the following manner. Differentiating
Eqn. (A-1b) with respect to time and using Leibnia’s tule, aftez reatranging,
yields

f1; = f1f; + (1 +ma)éy; +c.-,-%—"éé + [%f'e—’e - n,6] / e-fe(u-6u) B;Z
(4-2)
The integeal which appears in the above is identical to the integral of
Eqn. (A-1b). Consequently, solving Egn. {A-1b) for the integral and substi-
tuting into Eqn. (A-2) yields the differential format given by Eqn. {A-6b).
With some manipulation, the differential form of Eqn. (A-1a) may
be stated in a “power law” type format. First, Eqn. (A-1a) is differentiated
with respect to time and then simplificd using the deviatoric stress tensor
to yield

_ Beij 2 . Benn 280
_( 3% - a,;) = / {QU-Q(O} 25 __1_3,,6‘.,.? : 1] d.
_3)

Note that to establish the above it is necessary to show that 2, = 01}, = 0.
These, however, follow directly from Eqns. (A-1b) and (A-1¢) provided the
inelastic portion of the deformation may be treated as, at least, approxi-
mately incompressible (i.e., za = 0). M

Therefore, substituting Eqn. (A-3) into Eqn. (A-2) and nsmg the
differential form of Eqn. (A-1d) yields:

2uéy = ;Q(;’ii - ). (4-49)

The Q term can be replaced with the aid of the differential forms of
Eqns. (A-1f) and (A-1h). After some algebraic manipulation and minor
rearranging this yields:

W= (ﬂ%a; —045) (3% - ng,)'

- (4-5)
Consequently, substituting Eqn. (A-5) back into the differential form of
Eqn. (A-1f) and using Eqn. (A-4) yields, after some algebra, the diffcrential
power law of Eqn. (A-1a). Thus, the complete set of differential relations
for Walker's functional theory are:

o= (\/g(:i’su—Qn)(%su—ﬂn))n (:5‘1 -0y)
1) - ra
K \/ (zsmn - nmn)( 38mn — nmn)
(4 - 6a)
. : R . Ony y _18n
Q,'j = n,’, + (n; + ng)c;, + C.‘,'EE—;@ - (Q.‘,‘ - 0:,- - n;c‘-j)(G ™ 692 @)
(4 - 68)
K=K; - ng“"w, (A - Gc)
2‘“‘:“ = 5|')‘A(.hj + 2pé55 — &.'5 - 6.‘"(3) + 2#)0@, (A - ﬁd)
. Qe 60 . kieid
;= a‘."ﬁe + (';T)'i[c-i"lu‘n‘n + CinénjCpeCpq = 26ikC1;Cpeép)s
(A - 6e)
. . 2 (m-1)/2
G:(n,+n.e""w)W+n.(§ﬂ.-,»ﬂ.-,-) R (.'l—Gf)
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and

W=y Segey. (4 - &)
Note that a differential form for the function Q is not required since it does
not appear in any of the other expressions.

Numerical constants for the law were established [22-24] from uniax-
ial bar specimens tested under fully reversed, strain-rate controlled cyclic
stress-strain tests. These tests were conducted for & variety of temperatures
and strain rates. The testing conditions were sufficiently rigorous to cause
plastic deformation during the loading cycle. The creep and relaxation
propetties were deduced from observation of the behavior of the samples
when the cyclic loading was “held” at various points on the Ysteady-state”
hysteresis loop. Appendix Figs. A-1 through A-T7 illustrate the tempera-
ture dependent parametric values established under that work. Note that
the material constants K3, ny, ng, ns, and n are sero over the enitre tem-
perature range considered. This results in addilional simplifications to the
constitutive law. ’

APPENDIX B FINITE DIFFERENCE EQUATIONS

Solutions for the koverning nonlinear differential equations are ob-
tained using a Newton type method for nonlinear differential equations. It
is assumed that trial solutions for the transverse and axial deflection func-
tions, denoted as W and &, respectively, exist. From these, trial values for
centroidal axis strain and cross section rotation, &, and ¢, respectively, are
determined. Then, using the approximations ¢, = & + A¢, and ¢ = $+20
to substitute into Eqns. (16) yields

Aé,  OaM _ M

- g -
k(EOA“+E-l—B_l—)— 52 =p" - kN ¢+ '8_',—, (B— la)
B’Aqb N - M
(Eo+kE +kE:) E—k-g'— (B-—lb)

The terms N and M are evaluated by substituting &, and ¢ into Eqns. (11).
Numerical methods are used to approximate the derivative terms on the
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Figure A-1. Young's modulus as a function of temperature
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right-hand side of Eqns {B-1). The second detivative of the moment cor-
rection, which appears on the left-hand side of Eqn. (B-1a}, also is evalu-
ated numerically. This avoids the numerical problems which can result in
approximating fourth derivatives directly.

Assuming w = W + Aw and a similar expansion for u, upon sub-
stitution into Eqn. (7) and neglecting terms of order {Aaw)? and higher,
yields

Aeg = A(EBATU + KAw) + 8(03-—:, - xAu) (B-2)

where the factors A and B are defined as:
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B—%:—nu

. (B - 3a,b)

A=1+2£+m7v and
8s

Differentiating Eqn. (B-2) with respect to s yiclds, after rearranging,

o =A00A“ +(C-wB) 282 - xDaw,
(B-4)
895‘31 +(D+x A)—— +xkCAW
whete C and D are given by
_ 8 ow 8w di
" = — -k — 5a,b
=97 +age and D o % Se (B = 5a,b)

Developing an expression for A¢ is accomplished by using Eqn. (8). Since
it is assumed that ¢ = § + Ag, substitution into Equ. (8) yields

- 8% -JAw

L .  Be + i B + xAn
si +AP)xsing+ Adcosgp = +
in(# 9) ¢ ¢ ¢ = 1 + 26. + 246, /1426 +2Ae,
(B8

where the approximations sin A¢ = A and cosAé = 1 have been used.
For small Z, it is reasonable to assume that Ae, < &, thus allowing the Ae¢,
term to be neglected. Thus, since the first term on the left-hand side,
according to Eqn. {8), is equal to the first term of the right-hand side, this
implies that

-8
aw + kAu

Aécos¢= —h— (8—7)

Therefore, combining Eqns. (8) and (B-7) yields

1, 8Aw -
Ad = I(——OT +I¢Au). (B - 8) B

Derivatives of Ad are obtained from Eqn. (B-8). In this, it is assumed

- that the term 1/A may be treated as an approximate constant and thus

need not be differentiated. This provides significant simplifications without
engendering any substantial inaccuracies since the correction terms become

negligible as the exact solution is approached. Consequently, differentiating
Eqn. (B-8) with respect to s yields:

1
_. ~ K(-—T T), (B - 9u)
and
8a¢ 1, 8Aw  8'4Au
e xl- 5 T ). (B — 9b)

Central difference formulae are used to approximate the derivative
terms. However, prior to substituling into Eqns. (B-1) it is useful to estab-

. lish the following definitions:

2E
o= k.Eo+:-‘5 b—kE1+N.+%§;- (B - 10a,8)
6 =Eo+kE, and & =E,+kEs. (B - 10c,d)

Thus, substituting the various expressions given above inte Eqns. (B-
1) yields, after rearranging, the general finite difference nodal equations
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( 2A4° 2A. ,A ) wi-r ( add 2As 2A,-A.)A“' '
KE) 1 1
+ Ainy — Aiyy) - xaiBi = 2 (—— — )
( 3hs ,( 1— Aigr) - may YAy A‘.“))Au,
a;A;  ~E, B,H xb, E|A; 3
+ * k . - 18441 2
(2A‘ l, + ZA‘Ai) T ( 243 * 2Ai+lA:3)Au”’
E B\ 1 E!
+ =
( 2a¢° T AL .A.‘)A" 1
("E\A- 1, aBy 2E, b2 )A )
as T 28 T aar | Aae /o
E, E 1 1 2b;
B‘— - B - A; ’ — —) - : :
(2A' ( Biss) = maihs Tan (Ai-l M At A.'A:’)Aw'
a;B; KEl .+1 b 2E,
+(2A¢ A Asl Ai,,A;4)Awi+’
By E; Y-S Y PR
( YV A‘ﬂA‘.)AWin =p + e ki — N¢
(B-11)
and
aAi | (Ci-nBi) _ndy 2xd;
e YT 7As TR A.J)A“”" - ( Di+ Aa’)A“'
ciAi  e{Ci — xBy)
+(Ac’ 24, A.A:’)A“"' + (2A a 5)awies
¢B; | ci(D:i +xA;) 2¢,B;
+(An’ M TY) A.Ac-‘)A +( 28 *""C‘)A""
eB;  ci(Di + xA;)
+(Aa’ 249 A Aﬂ)‘““ (2A.-A.=)A""
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These two equations ptovide the finite-difference approximation for the de-
flection of the internal nodes of the beam, that is for the subseript 1 over
the range 3 € i € n— 1, (see Fig. 4). Therefore, for an aech of n +1
total nodes, they provide a system of 2n — 8 equations in 2n +2 unknowns.
Thus, ¢ight additional equations are required to provide a unique solution
for the problem. Six of these equations are obtained by using the boundary
condition. These provide two sets of theee equations, one set applicable to
node 1 and the othet set for node n + 1.

As evidenced above, the boundary conditions do not provide a suffi-
cient number of telations to enable unique solution. This, in part, results
from the inherent coupling generated by the assumption of Euler-Bernoulli
bending when both axial and transverse deflections are possible. Note that
the deficction functions ate not only telated to one another, but they also
appeat in the same functional format in both expressions. The derivative
of one is added to (subtracted from) the other multiplied by the curvature.
This, in turn, indicates that a form of implicit coupling exists between the
two generalized displacements, centroidal axis strain and totation. Ideally,
the generalized displacements should be completely independent.

A number of approaches can be employed to generate the two addi-
tional equations needed for unique solution. The one used in this study is
to require the “centroidal axis” strain in the wall to vanish. Mathemati-
cally, this is equivalent to appending, to the existing system of equations,

the two additional equations:

A‘,l = -Eal and Acge = —1n| (B - 14“16)

where €4 and ¢, represent the strain in the left and right extensions, respec-
tively. No condition is established for the “rotations” which might occur in
the wall sections. This is not felt to be significant since the nodal mesh, at
least for the equilibrium problem, is s centroidal mesh.

Using the boundary conditions and the two “wall strain” relations it
is possible to climinate the transverse and axial displacement components
for nodes 1, 2, n, and n + 1 from the general finite-difference equations.
This leaves a system of exactly 2n — 6 equations in the same number of
unknowns. If the coefficients of these equations are arranged in matrix
form, the result is a banded matrix with a bandwidth of six.
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The paper is concerned with the development of constitutive relations for large nonisothermal elastic-
viscoplastic deformations for metals. The kinemaltics of elastic-plastic deformation, valid for finite strains and
rolations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with
use of the incremental elasticity law permits a precise and purely deductive development of elastic-viscoplastic
theory. It is shown that a phenomenological thermodynamic theory in which the elastic deformation and the
temperature are state variables, including few internal variables, can be ulilized to construct elastic-viscoplastic
conslitutive equations appropriate for metals. The limiting case of inviscid plasticity is examined.

Nomenclature
da = element of area
ds = material line element
d,, = deformation rate
E. =strain rate
F =yield function
AF = deformation gradients
g,.G? = base vectors
g~.G'8 = metric tensors
J = absolute determinant of the deformation
gradient
k,a},A2p =internal variables
n =normal to the surface
P = force
q = specific applied heat
5 = entropy
T =temperature
! = fraction sector
{ =time
u = specific internal energy
|14 =volume
v = velocity
w = specific mechanical work
W = spin tensor
x! = inertial coordinate system
x“ = material coordinate system
x4 = convected coordinate systemn
p = density
a = Cauchy stress tensor
7 = Kirchhoff stress tensor
¢ = specific free energy
v
¢4 = Jauman stress rate
4 =time derivative

Presented as Paper 85-0621 at the AIAA/ASME/ASCE/AHS 26th
Structures, Structural Dynamics and Materials Conference, Orlando,
FL, April 15-17, 1985; received April 22, 1985; revision received May
19, 1986. Copyright © American Institute of Aeronautics and
Astronautics, Inc., 1985. All rights reserved.

*Assistant Professor of Engineering Science and Mechanics.
Member ATAA. |

+Professor of Aerospace Engineering. Associate Fellow ATAA.

tProfessor of Engineering Science and Mechanics. Associate Fellow
ATAA.

Introduction

HE prediction of inelastic behavior of metallic materials
at elevated temperature has increased in importance in
recent years. Many imporiant engineering applications in-
volve the use ol metals subjected to cyclic thermomechanical
loads, e.g., hot section components of turbine engines, nu-
clear reactor components, etc. These materials exhibit
substantial complexity in their thermomechanical constitu-
tion. In fact, so complex is their material response that it
could be argued that without useful a priori information, ex-
perimental characterization is futile. It is, therefore, impor-
tant to be able to model accurately the nonelastic behavior
of metals under cyclic mechanical and thermal loading at
temperature levels for which creep and recovery introduce

significant response phenomena.
Under this kind of severe loading conditions, the real

‘world of structural behavior is highly nonlinear due to the

combined action of geometrical and physical nonlinearities.
On one side, finite deformation (in a stressed structure) in-
troduce nonlinear geometric effects. On the other side,
physical nonlinearities arise even in small strain regimes,
whereby inelastic phenomena play a particularly important
role. From a theoretical standpoint nonlinear constitutive
equations should be applied only in connection with
nonlinear deformation measures. However, in engineering
practice, the two sources of nonlinearities are separated for
practical reasons, yielding at one end of the spectrum large
displacement and large rotation problems and on the other
end inelastic analysis in the presence of small strain.

Constitutive models for small strain in engineering litera-
ture may generally be grouped into three categories:
classical plasticity, nonlinear viscoelasticity, and theories based
on microstructural phenomena. Each group can be further
separated into ‘‘unified” and ‘‘uncoupled’’ theories, where
the two differ in their approach to the treatment of rate-
independent and rate-dependent inelastic deformation. The
uncoupled theories decompose the inelastic strain rate into a
time-independent plastic strain rate and a time-dependent
creep rate with independent constitutive relations describing
plastic and creep behavior. Such uncoupling of the strain
components provides for simpler theories to be developed,
but precludes any creep/plasticity interaction. Recognizing
that cyclic plasticity, creep, and recovery are not independent
phenomena but rather are very interdependent, a number of
“‘unified”’ models for inherently time-dependent nonelastic
deformation have been developed recently.
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Classical incremental plasticity theories are macro-
phenomenological because they base the derivation of state
variables purely on experimental results without direct
reference to the microstructure of the material. Most in-
cremental plasticity theories have four major components: 1)
a stress-elastic strain relation, 2) a yield function describing
the onset of plastic deformation, 3) a hardening rule that
prescribes the strain hardening of the material and the
modification of the yield surface during plastic flow, and 4)
a flow rule that defines the components of strain that is
plastic or nonrecoverable. Research in this area is volumi-
nous. For example, Zienkiewicz and Cormeau' developed a
rate-dependent unified theory that allows for nonassociative
plasticity and strain softening, but does not model the
Bauschinger effect or temperature dependence. Extensions of
classical plasticity to model both rate and temperature effects
were presented recently by Allen and Haisler,? Haisler and
Cronenworth,’ and Yamada and Sakurai.!

In the nonlinear viscoelastic approach, the constitutive
relation is expressed as a single integral or convoluted form.
This type of constitutive model employs the thermodynamic
laws along with physical constraints to complete the for-
mulation. A detailed review of several existing theories is
presented by Walker.® Walker’s theory is based on a unified
viscoplastic integral developed by modifying the constitutive
relations for a linear three-parameter viscoelastic solid. The
theory contains clearly defined material parameters, a rate-
dependent equilibrium stress, and a proposed multiaxial
model. An important shortcoming of Walker’s theory is its
failure to model transient temperature conditions. Many
other nonlinear viscoelastic theories have been proposed, in-
cluding those by Cernocky and Krempl,® Valanis,” and
Chabache.?

The microphenomenological theories attempt to represent
the response of polycrystalline materials in terms of various
micromechanisms of deformation and failure. Various
dislocation theories have been developed to predict plastic
deformation in terms of dislocation interaction, slip, glide,
density, etc. Most of the material models developed to date
depend primarily on the number of state variables used and
their growth or evolutionary laws. Many of the recent
«unified”’ microphenomenological theories have been dis-
cussed and evaluated by Walker® and Chan et al.'

One example of a microphysically based constitutive law is
an elastic-viscoplastic theory based on two internal state
variables as proposed by Bodner et al.!' These  authors
demonstrate the ability of the constitutive equations to repre-
sent the principal features of cyclic loading behavior, in-
cluding softening upon stress reversal, cyclic hardening or
softening, cyclic saturation, cyclic relaxation, and cyclic
creep. One limitation of the formulation though is that the
computed stress-strain curves are independent of the strain
amplitude and therefore too “‘flat’” or ‘*square.”’

Miller'2 has reported research on the modeling of cyclic
plasticity with ‘‘unified” constitutive equations. He also
recognizes the shortcomings of many theories in predicting
hysteresis loops that are oversquare in comparison to observed
experimental behavior. Improvement is accomplished by
making the kinematic work-hardening coefficient depend on
the back stress and the sign of the nonelastic strain term.
Theories that are similar in format to Miller’s have been pro-
posed by Krieg et al.’? and Hart.' The models use two inter-
nal state variables to reflect current microstructure state and
are based upon models for dislocation processes in pure
metals. All of these constitutive theories were formulated
without the use of a yield criterion. Since these models do
not contain a completely elastic regime, the function that
describes the inelastic strain rate should be such that the in-
elastic strain rate is very small for low stress levels. Theories
with a yield function and a full elastic regime have been
developed for the case of isotropic hardening by Robinson'’
and Lee and Zavrel's for both isotropic and directional
hardening.
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As previously noted, the quantities utilized in the small
strain theory of viscoplasticity (stress, strain, stress rate, and
strain rate) are defined only within the assumption of ““small
strains.” Yet the precise definition of what constitutes
“small strain’’ is always left unstated. Whether or not the
stresses for a given case are ‘‘small”” cannot be determined a
priori by geometric considerations. In general, one cannot
know in advance whether, for a given loading of a material,
the “*small-strain’’ assumption (always left undefined) will
hold or not. The question of whether the small-strain ap-
proximations are valid is always avoided in the ‘‘small-
strain’’ literature. Furthermore, as Hill!? points out, the really
typical plastic problems involve changes in geometry that
cannot be disregarded. In many cases, for example, it is suf-
ficient to take into account finite plastic strains and small
elastic strains or vice versa. From the theoretical viewpoint,
it is desirable in all cases to have a theory that intrinsically
allows for both the elastic and plastic strains to be large.
Such a theory, of course, must reduce to the earlier mentioned
special cases, as limiting cases. Furthermore, such theories
provide a check for those obtained by generalizing small-
strain theories.

The mathematical theories of deformation and flow of
matter deal essentially with the gross properties of a
medium. Heat and mechanical work are considered as addi-
tional causes for a change of the state of the medium. The
resulting phenomena in any particular material are not
unrelated. Therefore, a thermodynamical treatment of the
foundation of the theory of flow and deformation is ap-
propriate and, indeed, the obvious approach. Two very dif-
ferent main approaches to a thermodynamic theory of a con-
tinuum can be identified. These differ from each other in the
fundamental postulates upon which the theories are based.
An essential controversy (a good survey of this controversy is
given in Ref. 18) can be traced through the whole discussion
of the thermodynamic aspects of continuum mechanics.
None of these approaches is concerned with the atomic struc-
ture of the material. Therefore, they represent purely phenom-
enological approximations. Both theories are characterized
by the same fundamental requirement that the results should
be obtained without having recourse to statical or kinetic
methods.

Within each of these approaches, there are two distinct
methods of describing history and dissipative effects: the
functional theory!® in which all dependent variables are
assumed to depend on the entire history of the independent
variables and the internal variable approach®® wherein
history dependence is postulated to appear implicitly in a set
of internal variables. For experimental as well as analytical
reasons, 222 the use of internal variables in modeling in-
elastic solids is gaining widespread usage in current research.
The main differences among the various modern theories lie
in the choice of these internal variables.

Therefore, the predictive value of an elastic-viscoplastic
material model for nonisothermal, large-deformation anal-
yses depends on three basic elements: 1) the nonlinear
kinematic description of the elastic-plastic deformation, 2)
thermodynamic considerations, and 3) the choice of external
and internal thermodynamic variables. The objective of this
paper is to examine each of these elements, illustrate their in-
teraction, and extend these considerations to model the
large, nonisothermal, elastic-viscoplastic deformation
behavior of metals.

Moreover, the paper deals with the phenomenological
theory of elastic-viscoplastic bodies. The process inside the
lattice and at the border of the crystal grains is taken as the
physical background, without considering its connection to
the macroscopic behavior of the material at the present.

Kinematic and Fundamental Considerations

Consider body of volume V that occupies a finite region
of Euclidean space. When subjected to prescribed body
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forces, surface tractions, surface temperature, and surface
velocities, the body undergoes motion characterized by
X =x'(X*,1). The material particles of the body are iden-
tified by coordinates X®, which are referred to as material
coordinates. The relation of the material particles to the
material coordinates X does not change in time. The places
in space that the particles occupy during the motion are iden-
tified by the coordinates x’. Functions x' describe the motion
of the particles X through space. The place occupied by the
body at +=0 is taken as the initial configuration. In this con-
figuration the body is assumed to be strain-free, but not
necessarily stress-free. ’

A third coordinate system is defined by the material coor-
dinates as they deform with the body. This system will be
denoted by X4, which are referred to as convected coor-
dinates. The current configuration- of the body with spatial
coordinates x* and convected coordinates X“ and the initial
configuration of the body with material coordinates X will
be employed in what follows. For the spatial coordinates x’,
the covariant base vectors g,, the contravariant base vector
g, the metric g, and its dual g™ are used. Similarly, for the
convected coordinates X<, the covariant base vectors G,
the contravariant base vectors G#, the metric tensor G5,
and its dual GA are used. With regard to the initial con-
figuration, the covariant base vectors Ga, the contravariant
base vectors G, the metric tensor Gz, and it dual G are
used for the material coordinates X*.

For a second-order tensor A with components A” in the
spatial coordinates and components A*8 in the convected
coordinates, the following is true:

A=A"gg,=A"*G,Gy 1

The two sets of components are related to each other
through

A” =Xl x5pANE @

where X", denotes the partial derivative 3 (X8,0)/9X1.
For the motion, characterized by x"(X",1) = x"(X*,1), we
have
G.-l =x{Agr GAB + X.’Ar.‘lign (3)
From Eq. (3), it is seen that G 5 =0, where 1he dot denotes
time material derivative. The tensor transformation equa-
tions (1) and (2) will be used extensively in what follows.
A material line element ds=dX*G* in the initial con-
figuration when subjected to motion x"(X*,t) is deformed
into ds=dx’g, in the current configuration. The line element
dx’ is related to the line element dX* through the deforma-
tion gradient F’, by dx’ =F,dX* where

, o
Fi=ar (D) @

The mapping defined by the deformation gradient F=
Frg,G™ allows one to shift quantities from the current con-
figuration to equivalent, but alternate, quantities in the in-
itial configuration. For example, the right Caushy-Green ten-
sor C=C,,G*G* and the Green-St. Venant strain tensor
E=E,;G*G?, in the initial configuration are

ds =dS = g,,dx dx’ — G zdX*dX*

= (g.FLF}~Goy)dXdX’

= (Coy—Goy)dXdX? =2E ;dXdX* 5
The components of the deformation gradient, which relate

a deformed line element dX* in the convected coordinates to
the undeformed line element X in the initial configuration,

are given by fi, .
Fi=x.f) (6)

Equation (6) places in a single expression the easily confused
but distinct ideas of the transformation of tensor com-
ponents under a change of coordinates and a shift between
the current configuration and the initial configuration as a
setting for the governing equations. Truesdell and Toupin®
and Truesdell and Noll** emphasizes the current configura-
tion with the spatial coordinates and an initial configuration
with material coordinates. As a result, the deformation gra-
dient plays a prominent role in their work. Only in isolated
spots do they mention convected coordinates and, then, as
indirectly as possible. On the other hand, Green and
Adkins?® and Sedov® rely heavily on convected coordinates.
Our intention here is only to tie the two together for the pur-
pose of discussing elementary assumptions. Recently, Men-
delssohn and Baruch?” review this same point as well as ad-
ditional material relevant to sound numerical formulation of
finite deformation problems.
The velocity v=v7g, of a particle X is defined by

ve o (X, 1) 7N
ar '

From the spatial gradient of the velocity, the deformation
rate

d=d,g’g=d,;G'G" 8
is defined as
d,ma(V, +V,.,)} 9
The spin
W=W,g'g=W"G, Gy (10)
is defined as
W, anv, -V, (1n

In the initial configuration, the Green-St. Venant strain rate
is the shifted deformation rate,

E =F.Fid, =fif3das (12)

Basic to most of the postulated models of large elastic-
plastic deformation behavior is the additive decomposition
of d,, and E,, into elastic and plastic parts,

E P _ E P
d,=d,+d,, Eu=E.+E; (13)

The validity of this additive decomposition in the case of
finite elastic-plastic strains has been questioned by Lee and
his associates.?3? Lee’s?® approach is based on the total
purely elastic unloading from the current state to an in-
termediate unstressed plasticity deformed configuration,
without any reverse or other kind of plastic flow. The major
point in his theory is to decouple the total elastically induced
distortion and measure it from a relaxed unstressed state,
which is only plastically deformed from the initial to the in-
termediate configuration. Accordingly, the deformation gra-
dient F is decomposed in the form

EP
F=FF (i4)

P
where F transforms a line element from the initial configura-

E
tion to the intermediate configuration and F from the latter
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to the current configuration. The intermediate configuration

P
is chosen in such a way so that F is unaffected by the
presence of rigid-body motion. The deformation rate tensors
d,, and d,, are then defined. After some manipulations, Lee
shows the following relation:

EP
+F W R (15)

E EPE
dr\ =d" + FrA dll Fr:'

A

where the subscripts s denote the symmetric parts. Gen-
eralization of Lee’s theory for anisotropic elasticity was
given by Mandel. ™

Lee's theory is based on the assumption that the elastic
law does not change with the history of deformation and,
hence, a total elastic unloading can take place. However, it
has been shown™ that after a fair amount of plastic flow has
taken place, reverse plastic deformation -will result soon
upon unloading, even for small strains. Therefore, a total
elastic unloading cannot have any physical significance. In
view of this, the theory of Lee appears as a special case of
the theory of Green and Naghdi.** Although not as general
as the theory of Green and Naghdi, Lee's theory has the ad-
vantage of being more easily fitted with the physical property
of invariance of elasticity with respect to plastic deforma-
tion. In particular, Mandel® has pointed out that the Green-
Naghdi theory is not convenient if one wants to include
anisotropic elasticity effects. All this can be avoided by the
use of the convected coordinates, as proposed by Sedov*
and Lehmann.* The formulation presented herein will
follow the work of Lehmann.

All quantities from here on will be related to the metric of
the coordinate system X' in the deformed state. Hence,

Ji=G"Gye

U NY=G"G,, (16)
and the deformation rate is_

di= GG, = - ViGep G
=V UV, = - U (7

The deformation gradient may be split into its elastic and its
plastic components in the following manner:

=G G,, G'°G
j? J4 nC

P E
Fr H

(f")‘:=6'48 GBT G 057 (18)
E P
Ot U

The use of capital greek subscripts and superscripts (Gyr)
denotes parameters belonging to a fictitious intermediate
state, which is in general incompatible. The circumstance of
the noncontinuous configuration in the unstressed state has
been observed by Sedov,*®* who points out that convected
coordinates, as used herein, become non-Euclidean in this
configuration.

This multiplicative splitting of the metric change in the
convected coordinates leads to an additive splitting of the
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deformation rate according to

E E P E
di=syma L (ST ORNY +symVA LU DN ST

E E E_ P
=sym% [ (/")) —symAL DTSR (19)

E P
= d} + da}

In the current configuration of the body V, consider an
elemient of area da on the surface of 9 with an outward nor-
mal n=n,g" =n,G*. If the force dP=dP’g, =dP'G, is act-
ing on this element, the fraction vector is t=dP/da. The
Caushy stress,

0=0"g,8,=0"%G,Gy 20

defined, such that ¢t=o¢-n, which in component form (in
terms of spatial coordinates) is {"=0"n,. In the convected
coordinates, it is ¢ = 08n,.

It is convenient to work with the Kirchhoff stress tensor 7
in the current configuration, obtained from the Cauchy
stress by scaling
Sontog @n

A
T8

©|®

where p denotes the current mass density, o, the mass density
in the initial state, and J the absolute determinant of the
deformation gradient at the current configuration.

The time derivative of a tensor such as stress, which is
associated with the current configuration, admits infinitely
many definitions, depending upon the coordinate system
employed in the computation of such time derivatives. For a
correct large-strain, large-rotation elastic-plastic model, the
notion of ‘‘invariant stress fluxes’ and ‘‘objectivity”’ must
be introduced. A good treatment requires more space than is
available here.?® The corotational stress rate, also referred to
as Jauman stress rate, will suffice for the purpose of the
present discussion. Hence, in convected coordinates,

v

o3 = &7y + dlof —djat

v

75 =13 +d¢rg —d§ri (22)

From Eq. (21), the following relations between the various
rates of Kirchoff stress and Cauchy stress are obtained:

. Po .
3 ="o3 + JdCo}
D

]

\4 Po
) =—p—a',‘,' +Jd% a3 (23)
If a rate constitutive law is postulated between & and d in
finite inelasticity theories, then a potential does not exist,
which is necessary in the variational or thermodynamics-
based formulation of the problem. The basic difficulty lies
with the d*, term. This is remedied by postulating a con-
stitutive law between 7 and d.

The Elastic Deformations
The present study is concerned with the structure of the
constitutive relation of an elastic-viscoplastic (elastic-plastic)
medium. The term elastic-viscoplastic means that the viscos-
ity does not intervene in the elastic domain whose boundary,
in particular, is well defined at every stage of the deforma-
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tion. For simplicity, we assume further that the thermoelastic
behavior of the body is isotropic and unaffected by inelastic
deformation in the sense that the material constants
characterizing the thermoelastic behavior are independent of
inelastic deformation. Thus, we can obtain a unique relation

E
between the elastic deformations represented by f{, the Kirch-
hoff stresses 72, and the temperature 7,3%%

E E
JE=SE(4TY;

This function may be transformed into an incremental rela-
tion by differentiation with respect to time. This leads to a
general expression of the form

E E
d=rd (8.7 T=T(rAS 3 @9

E E v
di=dd (4,78 T, T,Gyc.dd) (25)

From Eq. (24) we see that the total deformation rate enters
the incremental form of the thermoelastic stress-strain rela-
tions. Therefore, the thermoelastic deformation is not in-
dependent of the inelastic deformation occurring at the same
time. This follows from the fact that in the integrated form
of the thermoelastic stress-strain relations Eq. (24), the
stresses and the strains are referred to the deformed state of
the body.

In view of the present discussion and the discussion in the
previous section, the hyperelastic behavior described by Eqs.
{24) and (25) will be replaced by a hypoelastic law. The
hypoelastic law is a path-dependent material law, since it
cannot be expressed in terms of an initial and a final state; it
depends on the path connecting these states. Otherwise, if we
did not make such a change, it would be necessary to retain
the finite deformation measure in the constitutive law. For
small elastic strains, there is practically no difference be-
tween hypoelastic and hyperelastic laws, as shown, for exam-
ple, by Lehmann.*

The above could be illustrated by the following example.
From the frequently used elastic stress-strain relation,

14

3 1
et fot -0t} =g [t -yt

ra(T=Tost 26)

we get

E E
A ratft  @n

v
I+

E 1 E
dt =g fom |8 ] -

which may be replaced by

E 1 (¥ v Vv i .
dé=?6-{ré— 1+y7§6f~]+ané+ané (28)

" We assume that inelastic deformation occurs if and only if

F(r"’c,T,k,...,aé,...,A’C'g,...)=0 (29a)
aF V  3F .
= A
At ST >0 (29b)

or, for elastic-plastic material,
F(rd, Tk,...,ad,...,A38,...) >0 (30)
for an elastic-viscoplastic material. The function F represents

the yield condition that bounds the domain of pure thermo-
elastic behavior in the ten-dimensional space of stress and
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temperature. The inequality given by Eq. (29b) is the loading
condition. The actual form of the yield condition for a given
material is determined by a set of so-called internal
parameters, which are scalars and/or tensors of even order.
The current values of the internal parameters depend on the
initial state of the material and the history of the ther-
momechanical process.

Thermodynamic Processes

In the treatment of elastic-plastic or elastic-viscoplastic
deformations, we have to distinguish between the description
as a thermomechanical process and the corresponding one by
means of thermodynamic state equations. It is sometimes
assumed that, in the case of processes which proceed through
nonequilibrium states, it is fundamentally necessary to start
with a description of the process.'®24¥7 Aliernatively, it has
been proposed that one might assume local equilibrium for
the elements of a body and therefore describe the state of the
elements, in general, by state equations.’** The conse-
quences of adopting these two approaches become par-
ticularly clear when considering the influence of entropy. In
the description of the process, entropy is a derived quantity
and in principle we can proceed without introducing it. In
the description by state eguations, it is, on the contrary, a
necessary state value that, at least in principle, can be im-
mediately determined. When restricting ourselves to homo-
geneous, quasistatical thermomechanical processes, the
description by state equations can be reviewed as equivalent
to that by processes.’”*! The controversial issues will, thus,
not be discussed further.

Restricting ourselves to elementary processes, we need not
analyze whether the applied heat arises from heat conduction
or from heat sources. For the same reason, it is not
necessary, in our case, to introduce the temperature gradient
in addition to the temperature or the body forces in addition
to the stresses.

The first law states, under our simplifying assumptions,
that the rate of the specific internal energy u is the sum of
the rates of the specific mechanical work w and the specific
applied heat g,

i=w+q 31

The rate of mechanical work is given by
W=—rad$ (32)

and may be split into an elastic and an inelastic part accord-
ing to Eq. (19),
W=—rddS + —r2dS=W+W (33)

D
The rate of inelastic work must also be split into a part W,

which is dissipated at once, and into another part W, which
represents changes in the internal state. Thus,

I | P S D

W=—ridl=W+W (34)
Po
D
Only W enters the entropy production
. D

The second law of thermodynamics requires

D
W=0 (36)
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We use as thermodynamic state variables the elastic strain,

E
represented by f2, the absolute temperature T, and a number
of other internal state variables (k,...,ad,...,A¢3,...) that
E

may be scalars and tensors of even order. The choice of f2
and T as state variables is based on the fact that in pure ther-
moelastic deformations, both quantities form a suitable set
of thermodynamic state variables. The plastic strain and the
total strain are unsuitable as state variables because, in
general, they do not uniquely define the state of the
material. A conflicting point of view has been expressed in
Refs. 42-44. The remaining state variables are added for the
sake of the description of the changes of the internal struc-
ture of the material.

The specific free energy (Helmholtz function) ¢ given by

¢p=u~-Ts 37
must be a unique function of the thermodynamic state
variables

e
o=0(fLT.kok. ., A%,...) (38)

Since the elastic part of the deformation, according to our
assumptions, does not depend on the plastic deformation, we
may divide the free energy into two different components, as

EE S
o=6(fAT) +&(T, kooyadr.,ALE,) (39)

E
where the first component ¢ refers to the elastic deformation

and the second ¢ to the changes of the internal state.
From Egs. (31), (33-35), and (37) we derive

. _E S
b=—sT+W+W (40)

Also, we obtain from Eq. (39)

EE E S
oo 5 2820
ai : ag v ai v
+7k—k+...+a-é—aé '+WB—Aég+". “41n

By comparison of Egs. (40) and (41), we may conclude that

E S
_9(s+9¢)
aT

E

E a¢
ré=pof 5—5'.— (42)

a3

For irreversible processes, this scheme of description has
to be completed by some statements about the dependence of
entropy production on the thermomechanical process. Under
our assumption, we need deal only with entropy production
by dissipated mechanical work, in connection with inelastic
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deformation. Thus, we assume, in general

D I
W=C4BrGd5>0 43)
where
E
C2 = CAB(fA T k,....a},...,AED) (44)

Equations (42) and (43) are the governing equations for
nonisothermal, elastic-inelastic elementary processes. The
specific free energy ¢, which determines the nondissipated
work of the thermomechanical process and the quantity C¢§;
which governs the entropy production, must be specified ac-
cording to the material behavior.

Elastic-Viscoplastic Model

Thermomechanical processes in elastic-viscoplastic bodies
cannot be considered as a sequence of equilibrium states,
even in the case of the elementary processes considered here.
Elastic-viscoplastic deformations are associated with non-
equilibrium states. One consequence of this fact is that we
may get a continuation of a process without any change in
the independent process variables. This occurs, for example,
in the case of creep with constant stress and temperature or
in the case of an adiabatic stress relaxation under constant
strain. In such cases, the body moves from a nonequilibrium
state to an equilibrium state.

In order to establish the constitutive relations for elastic-
viscoplastic bodies, which in the limiting case becoming
elastic-inviscidly plastic, we adopt the usual assumption that
the stresses, which produce the inelastic deformation, may be
expressed as the sum of the so-called athermal or inviscid
stresses, #4 and the viscous overstresses 7

A==+ (A7) (45)

This assumption by no means detracts from the ‘unified”
concept. The rate-independent limit of viscoplastic con-
stitutive relation was recently discussed by Travnicek and
Kratochvil.*® Hence, the total work rate can be partitioned
in the following way:

_E PV | E | P 1.P
W=W+ W+ W=—rdd§ + —72dS +—rAdS
e~/ Po Po Po
(46)
/
W

The viscous part of the work is completely dissipated. Thus,
we may write

v D,
w=Ww (47)

Regarding the plastic work, we have already stated that one
part is used for changing the internal state and only the re-
maining part can be considered 1o be dissipated. Therefore,
we must write

P S D
W=W+W (48)
So, we finally obtain
_E S D, D
W=W+ W+ W+ W (49)
\ﬂ\/
D
w
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We have assumed that the chahges of the internal state of
the material can be regarded as a sequence of equilibrium
states. Then, the specific energy is well defined in each state
of the process and we may take the usual overall statement
concerning the specific free energy. In so doing, however, we

s
must be aware of the fact that into the part W of the plastic

P .
work rate W only the athermal stress 72 enter, since only
these stresses are involved in the plastic mechanism. For the
same reason, we can introduce only the athermal stresses 74

D
. * p
into the statement concerning the dissipated plastic work W.
On the other hand, we have to add the dissipated viscous
D

D
work W to W in order to obtain the total rate of dissipation.
The different mechanisms for determining the total dissipation
and their coupling have been discussed by Perzyna.*

We now consider an example in which the specific free
energy has the following form:

EE S EE
e=0(fL T)+o(T, k, cd) =0 (f& Ty + k+f(T) +kaga§

(50

In this equation, k denotes a constant with the dimension of
a specific energy like the variable & and the function f(7).
Furthermore, we assume that the dissipation is given by

D, s
W=—F (FA —cpohad)d§

Py
D, P

W=—(rd—78)d5 ¢Gn

Po -
where £ <1 and ¢ denotes constant numbers. This leads to
D D, D, P P I

W= W+ W= (E - )W—tchaldS + W (52)
Hence, we obtain

s I D P
W=W-W=(1-F)W+Echadd] (53)

On the other hand, from Eqgs. (42) and (50) we have
s v
W=k +2hata§ (54)

Equations (53) and (54) are compatible, for instance, if we
put

. P

k=(1-5)W (55)
and

v P

af = Vackd§ (56)

P
From Eq. (35) it follows that, in our case, the plastic work W
is equivalent to the thermodynamic state variable k. This is
still true if we take £ as a function of k. But it does not hold
in the general case when £ also depends on the other state
variables T and . Equation (56) shows that only in a very
special case, a very unrealistic one, the state variable o is
equivalent to the plastic deformation.
From the thermodynamical considerations, it follows then
that we may introduce the quantities K and o, defined by

P
Eqgs. (55) and (56) or any other equivalent set (W,cpohad),
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as internal variables into the corresponding constitutive
equations of the process description.

The constitutive equations themselves are not yet deter-
mined completely by Egs. (50), (51), (55), and (56). These
given only the restrictive frame for the formulation of these
equations. We may derive a complete set of constitutive
equations, which is compatible with this frame, by the fur-
ther assumptions:

1) The introduction of a yield condition of the form,

. P
F= (A —cpoha) (fA—cpohal) —g*(W,T) =0 (57

where 4 denotes the deviator of the Kirchhoff stresses 4.
2) The plastic deformation obeys the so-called normality
rule,

P . dF
A =\
at ar (58)

3) The relations between the viscous stresses and the in-
elastic deformation rate are of the form,

PA 1., 1 a_m
dc—_-—z-;tC:z—n(tc_tc) (59)

4) The quantities £ and ¢ are constant.

We can eliminate the athermal stresses #¢ (which are not
state variables) from the equations of evolution by consider-
ing that the inelastic deformation can be expressed in two
different ways. In one, the plastic mechanism is considered
and the viscous mechanism in the second. From Eq. (57), we
then obtain

R ,
dA=2X (A —cpohat) (60)

while from Eq. (59), we have

P .
di=—(tt~13)
2n

1 -
=-2—;[té—-6‘pohaé--—(té—c‘pohaé)l B (61)
P
By comparing these equations for df, we get
x=_‘_{(('é-cpohaé)(té—cpohaé)'”’_ 1} 62)
49 g

Following the course of the process in each state, the internal
P

parameters W and o2 and, therefore, also k2 = k*(W, af) are
known. Thus, we may calculate X from Eq. (62) and then all

the other needed quantities such as r and 22.

Discussion

Many thermodynamic considerations of nonisothermal,
elastic-viscoplastic deformations refer essentially to the
general fundamentals that must be observed in describing
such phenomena as thermomechanical processes and then
discuss what particular restrictions follow from the second
law of thermodynamics. Only a few papers attempt to
describe completely such processes by state equations. Most
of these papers introduce plastic strains as thermodynamic
state variables. But one may conclude from the consideration
of the phenomena in the crystal lattice (dislocations, for ex-
ample, that have completely passed through the crystal pro-
duce plastic strains but no changes of state) as well as from
phenomenological observations (different states of hardening
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can belong 1o the same plastic strains) that plastic strains in
general cannot be regarded as state variables. Furthermore,
all these papers consider the plastic work as completely
dissipated. However, this is in contradiction with experimen-
tal results, from which it emerges that one part of plastic
work is used for producing states of residual stresses in the
lattice, which, when phenomenologically considered, cause
hardening.

The results in work presented here can be extended to
more complex constitutive equations by introducing more in-
ternal parameters or state variables. We may extend our ap-
proach 10 more general, anisotropic hardening materials by
assuming [see Eq. (50)], for example, that

EE )
¢=¢(fL,T) +o(T kot ALE)
EE
=oAL T)+k+(T) +AaSad (63)

Also, it may be more advantageous to replace the assump-
tion in Eq. (58) for the plastic deformation rate by

P . 3F v
di=A—+B3 (64
ard

This form of this model appears to be more suitable for
representing some experimental results in which second-order
effects and some deviations from the normality rule have
been observed. Sometimes, the normality rule is considered
as a fundamental law based on an entropy production princi-
ple. But we should keep in mind that, since not all of the
plastic work is dissipated, we cannot expect the total plastic
deformation rate to obey the theory of plastic potential even
though the mentioned principles of entropy production are
correct.
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Nonisothermal Elastoviscoplastic Snap-Through and Creep
Buckling of Shallow Arches |
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The problem of buckling of shallow arches under transient thermomechanical loads is investizgated. The
analvsis is based on nonlinear geometric and constitutive relations and is expressed in a rate form. The material
constitutive equalions are capable of reproducing all nonisothermal, elastoviscoplastic characteristics. The

solution scheme is capable of predicting response that includes pre- and postbuckling with creep and plastic |

effects. The solution procedure is demonstrated through several examples that include both creep and snap-

through behavior.

Introduction

LASTIC snap-through of low arches under quasistatic

loads has been the subject of several investigations. The
significance of the problem, insofar as it illustrates: certain
important featurss in more complicaied buckling problems of
plastes and shells, was pointed out by Marzuerre,! who con-
strucied a simpiified mechanical model to demonstrate these
features. Timoshenko* obtained an approximate solution to
the problem of a low arch under a uniformly distributed load.
Biezeno® considered the problem of a low-parabolic arch
loaded laterally at the midpoint with a concentrated load. He
also investigated snap-through buckling of a shallow spherical
cap, pinned along its circular boundary, under the action of a
concentrated load applied along the axis of rotational symme-
try. He presented his approximate solutions by means of ioad-
deflection curves and equations from which the critical load
could be caiculated. .

In 1952, Fung and Kaplan? investigated the problem of low-
pinned arches of various initial shapes and spatial distributions
of the lateral load. Their results show that a very shallow arch
snap through symmetrically, whereas a higher arch buckles
asvmmetrically. They also ran a limited number of experimen-
1al tests, and their experimenrtal dara are in good agreement
with their theoretical resuits. About the same time, Hof!{ and
Bruce’, in investizating the possibility of snap-through tuck-
ling of a low-pinned arch with a half-sine-wave initial shape
uncer a half-sine-wave distriputed dynamic load (suddenly ap-
plied with infinite duraticn), obtainad resulks for the qua-
sistatic load case that are identical 10 those obtained by Fung
and Kaplan for the same problem.

In 1962, Gjelsvik and Bodner® obiained an approximare
solution 10 the probiem of a low-circular arch with a concen-
trated load at the midpoint of the arch and clamped boundary
conditions. They also reported on experimental results.
Schreyer and Masur’ obtained an exact solution to their prob-
lem (and for the load case uniform pressure), and they showed
that for the concentrated load case, the arch snmaps through
symmetrically regardless of the value of the rise parameter.
Masur and Lo? presented a general discussion of the behavior
of the shallow circular arch regarding buckling, postbuckling,
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and imperfection sensitivity. Snapping of low-pinned arches
resting on an elastic foundation has been investigated by Sim-
itses.® This svstem exhibizs all forms of experimentally ob-
served buckling phenomena (smooth and vicient) and of theo-
retically predicted responses {limit point, bifurcation with
stable branching, and bifurcation with uns:able branching),
and it is presented with sufficient detail in Re{. 10. Experimen-
tal results have also been reporied by Roorda.!!

The effects of inelastic material behavior found their way
into the literature since the 1960’s. Onat and Shu'* considered
the behavior to be one of rigid-perfectly plastic. Fromciosi,
Augusti, and Sparacio!? discussed the collapse of arches under
repeated loads with inelastic material behavior. Studies of in-
elastic snap-through buckling of shallow arches aiso were re-
ported by Lee and Murphy.' In addition, Augusti'® investi-
gated plastic buckling of a model of a thres-hinged arch in
1968, and a more complete analysis of the same mode] was
provided by Batterman'® in 1971. Finally, the reader who is
interasted in the ultimare strength of parabolic steel arches
with bracing system is referred to Komatsu,'” who considers
inelastic in-plane and out-of-plane instabilities and provides
design formula for each case.

Crezp buckling of shallow arches has been investigated by
Huang and Nachbar,’® Krajcinovic,'” and Botros and Bi-
enek . The elastic response of arches under sudden (dvnamic)
application of the external loads has been reporied ty Hoff
and Bruce,® Hsu,*!* and Lock.? For a more complete bibliog-
raphy see Ref. 24. As far as the authors kncw, no work has
been reported on the nonisothermal efastoviscoplastic behav-
ior of shallow arches. The purpose of this paper is 16 demon-
strate the effect of highly nonlinear material behavior on the
snap through and creep buckling of shallow arches.

Elastothermoviscoplastic Constitutive Relations

The prediction of buckling loads and postbuckling behavior of
structural components, like shallow arches, made of a realistic
metallic marerial and subjected to nonisothermal thermome-
chanical loads has increased in impornance in recent years,
Under this kind of severe loading conditions, the structural
behavior is highly nonlinear due to the combined action of
geomerrical and material nonlinearities. On one side, finite
deformation in a stressed structure introducss nonlinzar geo-
meuric effects. On the other side, physical nonlinearities arise
even in small strain regimes, whereby inslastic phencmana
play a particularly imporiant rols. From ¢ theoreticz! stand-
point, nonlinear constitutive equations should be applisd cnly
in conrmection with neniinear trancformatior meanurer (e
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ing both deformation and rotations). However, in almost all of
1he works in this area.” the two identified sources of nonlin-
earities are always separated. The separation yields, atone end
"of the spectrum, problems of largz r:sponse, whereas at the
other end problems of viscous and. or aonisothermal behavior
in the presence of small strain.

The classical cheortes in which the material response is char-
acterized s a combination of distinct ¢iastic, thermal, time-in-
dependent inelastic (plastic) and rime-dependent inelastic
(creep) deformation components 2annot axplain some phe-
nomena that can be observed in complex thermomechanical
loading histories. This is particularly true when high-tempera-
:ure nonisothermal processes must be taken into account.
There is a sizeable body of literature™ = on phenomenological
constitutive squations for the rate and temperature-dependent
piastic deformation behavior of metallic materials. However,
almost all of these new *‘unified’’ theories are based on smail
strain theories, and several suffer from some thermodynamic
inconsisiencies.

In a previous paper,”’ the authors have presented a complete
sat of constitutive relations for nonisothermal, large strain,
elastoviscoplastic behavior of metals. It was shown there™" that
the metric tensor in the convected (maizrial) coordinate system
can be linearly decomposed into :lastic and (visco) plastic
parts. So a yield function was assumed, which is dependent on
the rate of change of stress on the metric, on the temperature,
and on a set of internal variables. Moreover, a hypoelastic
law was chosen to describe the thermoelastic part of the
deformation.

A time- and temperature-dependant viscoplasticity model

- was Tormulated in this convected material system o account
for finite strains and rotations. The history and temperature
dependence were incorporated through the introduction of
internal variables. The choice of these variables and their evo-
lution wars motivated by thermodyamic considerations.

The nonisothermal elastoviscopiastic deformation process
was described completely by ‘‘thermodynamic state’’ equa-
tions. Most investigatorss®-*® (in the area of viscoplasticity)
smploy plastic stzains as state variables. The authors’ previous
study?? shows that. in general, use of plastic strains as state
variables may lead o inconsistencizs with regard :o thermody-
aamic considerations. Furthermcrs, the appeoach and formu-
lation employed in previous works ‘2ad 0 the condition that
ail of the plastic work is completelv dissipated. This, however,
is in contradiction with experimen:al evideacs, from which it
emarges that part of the plastic work is used for producing
residual stresses in the lattice that, when phenomenologicaily
considered, causes hardening. Berh limiations were 2xcluded
from this®’ formulation. Accuracy of the formulation was
checked on a wide range of axampiss.”
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and v, are the material velocities gradiznts. Hence,
die = Vil{Uie + Ves) 4)

The expression
Ton e - i — U =symiYd O

represents the symmetric part of (), or tha covariant deriva-
tive with respect 10 time, also called the convecied derivation,
which is due to Zaremta and Jaumann.

The total deformation can be decomgposed according to

[ORY]

fl =3jmémrg:x = f1f% ()]

where the superscript (*) relates to a fictitious configuration
defined by a fictitious reversible procsss with frozen internal
variabies. The decomposition of Eq. (6) leads to an additive
decomposition of the deformation rate

) n O}
di =d\ + di N

(n @,
+ is related to the reversible deformations, whereas d) de-
notes the remaining part of the deformatrion rate.

For the description of the stress state, we introduce the
Kirchoff stress tensor si, which is connected with the real
Cauchy stress tensor 7% by the relation

st = (p/0)dk @

Assuming that the elastic vehavior is not affected essentially
by inelastic deformations, the following hypoelastic incremen-
tal law was chosen*":

{n

i U9, L. 15
dk=-2—5!k.—[§?’:+ar}°k ®

whare ¢} is the weighted strass deviator, G the shear modulus,
K tha ouik modulus, and « the coefficient of thermal expan-

siofl.
The foilowing constitutive relations were astablished®’ for

the inelastic behavior. Yield condition:

F = (= cpgd)f —cpgdh) — &34, D =1 - k>0 (10)

Accompanying equilibrium state:

_ The constitutive relation will “e rephrased here in some F = (Fi —chgd (Gl —cogdh) — x4, D=/ -k =001
different form. For brevity 've compile only some notarions
and fundameatal relations that arz used in the formulation of _ Evolution law for inelastic deformations:.
the intended constitutive jaw. For Serails ses Refs. 27 and 28. e ;
Conceraing he formulation of conastitutive faws, it advan- a - s
) C g :ula lonof s e 5:1t s d' = IN(FL = g3 (12)
trageous (0 use a material (convesied zoordinate system. The
transformation from the underformed state (merric 2..) to the with
deformed state g, <an be representad by the tensor
'=a"a, . - la i '_'7 F V(K = cagdc
fi=9" 2 (1a) X = L(V'([k cpg S, cogsy) _ D (13)
or 49 k
~Iy = o ;’ ib - i : s . . [
U™ =87 2 1®) T = (] - chgil) + chaih (1)
) ) _ LedgN
The total deformation rate is defined by
. ] Evolution laws for the internal variables:
dl = Vag2, = = Vigu&K = YN = — v/ ="VSE @)
: . 1., ®
Here () denotes time material derivative. The rate of change OR . A= f,[‘d“ s
of the metric tensor is given by 'G'NAL pAGE IS
OF POOR QUAL ‘
. 7 ')
— B = Ui + e, 3) Q Ty Bk =E8di (16)
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F= Oand 8 aT >0 (17)
then
. 523
di = d; (18)
] . . .
d, =0 and d' bIN(H —-cpgly) (19)
with
o s gy T3S
X= SnkZI:-(“ cpgli) 1] 3T T} 20)
I
9F v, &F ;
F= Oand s‘vﬁT 0 @2n
or
F<0 (22)
di = d 23
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A=0 (23b)
v. '
Bl =0 (23¢)

Within the developed frame, the elastoviscoplastic behavior
is governed by the scalar material functions _c(s,’;,T,A,ﬁL).
k3A,T), g(sinR, Bi), 8(A.R, £)), and n(4,7,£%). These ma-
terial functions can be determined from a series of monotonic
and cyclic processes with proportional and nonproportional
paths at different temperature levels.*®

General Formulation and Solution Schemes

The rate form of the constitutive equations suggests that a
rate approach be taken toward the entire problem so that flow
is viewed as history-dependent process rather than an event.
For this purpose, a complete true ab-initio rate theory of kine-
matics and kinerics for continuum and curved thin structures,
without any restriction on the magnitude of the transforma-
tion, was presented in Ref. 28. It is implemented with respect
10 a bodyv-fixed system of convected coordinates, and it is valid
for finite strains and finite rorations. The time dependence and
large strain behavior are incorporated through the introduc-
tion of the time rates of change of the metric and of the
curvarure.

The constitutive law may be applied to the conservarion of
momentum via an appropriate variational principle. The prin-
ciple of virtual power (or of virtual velocities) reads

[ Uijévj_,'dV-S UD_/"&U,‘ dVv - ‘. I'Tiél)/dA =0 ‘(24)
v v Ja

where v, are the virtual velocities, /7 the body forces per unit
mass, and »77 the surface tractions. Towal differentiation of

Eq. (24) yields

i .
j (ijdl:- +o¥df - vf,o"f>6v,.,- dav - [ pg-f—év dav
4 -

a7/ " déu,) . ( dév;
- o, &4 1 cd } - el d V
5 ds oi/ +j;0(dl,"d vvpf d(d

-X yrd—‘“-dA_o 25)
A
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At any instant Eq. (25) must be satisfied. The virtual veloc-
itv and its time derivative are then independent. Moreover, the
last three terms of Eq. (25) are equivalent to Eq. (24). Hence,
the principle of the rate of virtual power may be obtained in its
concise form. For further classifiations, the total derivative of
the stress components will be represented by the Jauman
derivative, and the following integrals are defined by

I = [ o bu,, dV ©6)
.

I = [ (idi = idi)or,, dV . o)
v

= | ottt av (28)

Then. substitution in Egs. (23) vields the final form of the.

principle of the rate of virtual power:

/,-'; 5
I=l+L+1I= [’pi—év'.dVi— [ vd—T-au,,dA (29)
g IA .

dr dr

The quasilinear naturz of the principle of the rate of virtual
power sugzests the adoption of an incremental approach to
numerical integration with respect to time. The availability of
the field formulation provides assurance of the completeness
of the incremental equations and allows the use of any conve-
nien: procedure for spatial integration over the domain V. In
the present instance, the choice has been made in favor of 2
simple first-order expansion in time for the construction of
incremental solutions from the results of finite-element spatial
integration of the governing eguations. -

The procedure empioved permits the rates of the field for-
mulation tc be interprered as increments in the numerical solu-
tion. This is particularly convenient for the construction of
incremen:al boundary condition histories.

The finite-element method for spatal discretization has
been well documented (see, e.g., the books by Zienkiewicz?® or”
Oden®®) and will not be de:ailed here. The algetraic counter-
part of Eq. (29) After the finite-element discretization (for
dezail see Ref. 28) is the well-known stiffness expression

KUV =1{P)-[F] (30)
with the tangent stiffness matrix [K], the vector of the incre-
mental velocizies {¥], ancé the vecior out-of-balance force
rates, externa) force rates { £} minus internal force rates { £ 1.
The homogenous case of E5. (30) indicates either the non-
uniqueness of the equilibrium path at a siabie or unstabie
bifurcation roint or the unigue but unsiabis situation at 2 limit
point. Hence, this criterion may be evaluated by a determinant
check or supplementary eigenvalue analvsis for the load
parameter parallel to the loading process.

Even under the condition of static external Joads and slowly
growing creep effects, the presence of snap-through buckling
makes the inzrtia effects significant. In dynamiz analyses, the
applied body forces include inertia forces. Assuming that the
mass of the body considered is preserved, the mass marrix can
be evaluated prior to the time integration using the initial
configuration.

Finire-element solution of any boundary-value problem in-
volves the solution of the equilibrium equation (global) to-
gether with the constitutive equanon (Jocal). Boih equations
are solved simultaneously in a step by step manner. The incre-
mental form of the global and local equations can be'achieved
by taking the integration over the incremental time step
At =, — 1. Therectanguiar ruie has bezn applied 10 execute
the resu‘xinc time integration.

Cleariy, the numerizca] soiution involves iteration. A simpli-
fied \e'q(\":‘ of Riks Wemrpner conerant-arch-leneth me: "n‘
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has been used. This {teration procedure, which is a generaliza-
tion of the displacement control method, also allows to trace
the nonlinear response beyond bifurcation points. In contrast
to the conventional Newton-Raphson techniques, the iteration
of the method takes piace in the velocity and load rate space.
The load step of the first solution in 2ach increment is limited
by controlling the length ds of the tangent. Either the length is
kept constant in each step, or it is adapted to the characteristics
of the solution. In 2ach step the triangular-sized stiffness ma-
trix has to be checked for negarive diagonal terms, indicating
that a critical point is reached.

Shallow Circular Clamped Arch

The theory and computational procedures described in the

proceeding sections have been applied to the creep buckling
" analysis of a shallow circular clampsd arch. The problem of

the clamped arch, besides being of some practical interest,

contains a number of similarities to that of the uniformly

loaded spherical cap. The trend of rasults of the arch problem
.. serves as a good indicator to the behavior of the latter.

The shallow circular clamped arch subjected to a single cen-
tral concentrated load, as shown in Fig. 1, is analyzed. The
material chosen for the numerical experimentation is the car-
bon steel C-45 (DIN 1720) with £ =107 psi, »=0.3, and
o, = 2.7 x 10° psi at room temperature. The viscoplastic prop-
erties (the scalar marerial functions) were obtained in Ref. 28.

The analysis is performed with the aid of 24 paralinear
isoparametric elements (Fig. 2). The paralinear isoparametric
element is intended for the analysis of oriented structures
where the geometry is such that the thickness is small com-
pared to other dimensions. The characteristics of the element
are defined by the zeometry and interpolation functions,
which are linear in the thickness direction and parabolic in the
longitudinal direction (see Fig. 2). Consequently, the element

before deformation remain straight but not necessarily nor-
mal to the midsurfacs after deformation.

The elastic behavior, corresponding 10 both axisymmerric
and asymmerric response, is shown on Fig. 3. These curves are
in complere agreement with those produced by Gjelsvik and
Bodner,® only because the Young’s modulus and Poisson's
ratio values used are virtually the same (carbon steel C-435 here
and 2024-T4 aluminum alloy in Ref. 6). Note that these 2lastic
response curves are hypothetical for our marterial but true for
the 2024-T4 alloy. The true behavior for our material is elasto-
viscoplastic, and it is labeled as such on Fig. 3. Note that this
curve reprasents quasistatic (steady-state) 2lastoviscoplastic re-
sponse, as described by the chosen consttutive law. According
to this, snapping occurs at a load of 26.20 b, primarily be-
cause of the low-yield strength. Then, the postlimit point be-
havior seems to be primarily driven by viscoplastic behavior.
. Itis expected here that if loads up 1o approximately 14 b are
reached quasistatically and left applied for a long time, the
primary rasponse will be creep, and the critical creep collapse
time will be extremely large. On the other hand, for loads
between 14 and 26.23 |b (especially for the higher range), the
behavior will be a combination of creep and snap-through
buckling. This is best demonstrated by the curve on Fig. 4. The
applied load is reached quasistatically in 13 min, and then it is
kept constant. The curve of Fig. 4 depicts the behavior of the
arch in terms of midpoint deflection vs time. Creep, initially,
is very slow; then snap-through takes place in 32 min, curve
BC, and then the creep behavior continues until a critical time
to creep (creep buckling occurs) is reached after a toral time 97
min. Note that for this loading condition, the critical time to
creep in 97 min. Creep buckling and critical time to cresp are
based on the phenomenon that the derlection increased very
rapidly. For loads higher than 26.2 Ib, it is expected thart snap-
ping will occur early during quasistatic loading, and then the
creep behavior will be similar to that shown on Fig. 4, past
point c.
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The next example considers the influence of cvclic loading
on the response. Figure § illustrates the load deflection behav-
jor of the arch under a cyclically applied external load. The
load is increased, quasistatically, from zeroto 26 1bin $ min,
then it is held constant for 2.5 min. after that it is reduced t0
20 ibs and held constant for 50 min, then raised to 25.5 Ib for
2.5 min, and finally it is reduced tack to 20 lb held constant.

The steady-stare response under this type of loading exhibits
several relative maxima points, which may imply that snapping
is imminent shortly alfter the load reaches the value of 26 Ib
(between points A and B on Fig. 5). The dashed curve corre-
sponds 10 the hypothetical elastic static response, and it is only
chown for comparison purposes.

The last example presented in Fig. 6 considers the influence
of temperature on the arch behavior. The loading history is the
same on the one shown on Fig. 4. The curve corresponding to
T = $0°F was discussed previousiv (Fig. 4), and i1 is used here
as a basis for comparison. When the temperarure is raised 10
200°F (after this, the loading is applied), the time 1o snap is
reduced to 26 mir, whereas the critical creep collapse time is
not appreciably affected. On the other hand, at the highest
temperature T = 1000°F for which rzsults are shown. The crit-
ical creep collapse time is reduced to 62 min, and the steady-
state response does not show a clear snap-through behavior.
Different values of o were used for the different temperature
in the elastic range.

Discussion
As noted earlier, the main thrust of this work has been to
demonstrate the effect of highly nonlinear material behavior
on the snap-through and creep buckling of shallow arches. It
is evident that in the presence of both elastic and viscoplastic
deformation the process of buckling assumes an entirely new
character. Buckling develops as a time-temperature-dependent

deformation process under consiant or variabie loads of mag-
nirudes smaller than the elastic critical values. In arches under
loads below the critical values the structure initiaily deforms
quasistatically, with the thermoviscous terms manifesting
themselves in the form of increasing displacement under, say,
a constant load. When the magnitude of the displacements
reaches a certain thresnold state, the arch snaps dvnamically
into ths postbuckling configuration and then continues qua-
sistatic deformation 2gain. _

The material constitutive relation has besn proven to be
capabie of reproducing the main characteriszics of viscoplastic
deformations. The modified Riks/Wempner iteration scheme
has been found to be a versatile technique in the pre- and
postcritical range. -

The influence of thermomechanical coupling can become
very large in stability problems. Such processes are always
connected with a rapid growth of inhomogeneity of the state.
Thorough investigation of such problems, however, must be
performed with the necessary de:ail. ) .
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NON-ISOTHERMAL BUCKLING BEHAVIOR OF VISCOPLASTIC SHELL
STRUCTURES

Richard Riff
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

The buckling behavior of thin metallic shell structures under transient thermomechani-
cal loads is investigated. The analysis is based on nonlinear geometric and constitutive
relations, and all the field equations are expressed in a rate form. The employed consti-
tutive equations are thermodynamically consistent and they are capable of capturing all
non—isothermal, elasto-viscoplastic characteristics of the response. The solution scheme
is capable of predicting response which includes pre- and post-buckling with creep and
plastic effects. The solution procedure is demonstrated through several examples which
include both creep and snap-through behavior.

Introduction

The prediction of inelastic behavior of metallic materials at elevated temperatures has increased
in importance in recent years. The operating conditions within the hot section of a rocket motor
or a modern gas turbine engine present an extremely harsh thermomechanical environment. Large
thermal transients are induced each time the engine is started or shut down. Additional thermal
transient from an elevated ambient, occur whenever the engine power level is adjusted to meet
flight requirements. The structural elements employed to construct such hot sections, as well as
any engine components located therein, must be capable of withstanding such extreme conditions.
Failure of a component would, due to the critical nature of the hot section, lead to and immediate
and catastrophic loss in power and thus cannot be tolerated. Consequently, assuring satisfactory
long term perfor- mance for such components is a major concern for the designer.

The problem of inelastic analysis of shell structures has been investigated recently by Kojic’
and Bathe 1. They used the ”effective-stress-function” algorithm to compute plastic and creep
effects on the behavior of shell like structures. The effects of inelastic material behavior on stability
of shells found their way into the literature since the late 1970’s. The paper by Miyazaki and
Ando ? deals with creep buckling of perfect spherical shells subjected to pressure loading and
considers only the effects of steady-state creep. Xirochakis and Jones 3 have studied axisymmetric
and bifurcation creep buckling of externally pressurized spherical shells under the condition of
secondary creep only. Botros and Bienek 4 presented a numerical treatment of the creep buckling
of these configurations. Their work includes the effects of elastic strain, primary and secondary
creep strains and creep recovery. The influence of temperature and viscous effects on dynamic
buckling of shells has been considered by Wojewodzki and Bukowski 568, The book by Owen and
Hinton 7 gives a list of references for the applications of finite element methods to the problem of

creep buckling of structures.
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As far as the author know no work has been reported on the non-isothermal buckling behavior of
elasto-viscoplastic shell structures.The purpose of this paper is to demonstrate the effect of highly
nonlinear material behavior on the snap through and creep buckling of shells.

Elasto—Thermo—Viscoplastic Constitutive Relations

In a previous works 8711, following the ideas of Lechmann 1213 the authors have presented a
complete set of constitutive relations for nonisothermal, large strain, elasto—viscoplastic beh avior of
metals. It was shown there 8 that the metric tensor in the convected (material) coordinate system
can be linearly decomposed into elastic and (visco) plastic parts. So a yield function was assumed,
which is dependent on the rate of change of stress on the metric, on the temperature and on a set
of internal variables. Moreover, a hypoelastic law was chosen to describe the thermo-elastic part

of the deformation.

A time and temperature dependent viscoplasticity model was formulated in this convected
material system to account for finite strains and rotations. The history and temperature dependence
were incorporated through the introduction of internal variables. The choice of these variables, as
well as their evolution, was motivated by thermodynamic considerations.

The constitutive relation will be rephrased here in some different form. For brevity we compile
only some notations and fundamental relations which are used in the formulation of the intended
constitutive law. For details, see Refs. 8 and 11.

Concerning the formulation of constitutive laws it is advantageous to use a material (convected)

coordinate system. The transformation from the underformed state (metric 3,';;) to the deformed
state (gix) can be represented by the tensor:

-]
- . » - (-]
fi=d"gn or (fk=9" 9 (1)

The total deformation rate is defined by

. .. 1 . iff 1o fe1yigr
dy = %g"yrk = "Egirgrk = %(f“):(f).’k =-5(/ etk ()

here (') denotes time material derivative. The rate of change of the metric tensor is given by
Gik = Vik T ki (3)

and v; x are the material velocities gradients. Hence,
1
dix = §(vi,k + vk 5) (4)

The expression
v [ - - ..
fi= (fYs + &fi - dif7 = sym{(£)} (5)

represents the symmetric part of (f)'k or the covariant derivative with respect to time, also called
the convected derivation, which is due to Zaremba and Jaumann.
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The total deformation can be decomposed according to

.o, () (r)
fI: =g’mgmr gsk =f:-f): (6)

"
where the superscript () relates to a fictitious configuration defined by a fictitious reversible process
with frozen internal variables. The decomposition of Eq. (6) leads to an additive decomposition of

the deformation rate G
di =d; + d; (7
{r) ()

di, is related to the reversible deformations, whereas d}, denotes the remaining part of the deforma-

tion rate.

For the description of the stress state, we introduce the Kirchoff stress tensor s};, which is
connected with the real Cauchy stress tensor a3, by the relation:

i _P i
S = ;U'k (8)

Assuming that the elastic behavior is- not affected essentially by inelastic deformations, the
following hypoelastic incremental law was chosen 8

(r') 1 V' 1 T mY et -
4= 25 t Hggsr +ol ok ‘ (9)

ti :  weighted stress deviator

G : shear modulus

K : bulk modulus

a : coefficient of thermal expansion

with

The following constitutive relations were established 2 for the inelastic behavior.
yield condition:

F=(t-chgBi)tf - chopl) - F(4T) =/ -k >0 (10)
accompanying equilibrium state:
Fe(f—choBl)E—chgBt)-KFAT) =T -k =0 (11)

evolution law for inelastic deformations:

(8

d,=2A(F, - ¢ 7 9B}) (12)
with
1 (6 - gB)(tk - cpgBH)
A= —( ko -1 13
po - ) (13)
and 1
&= -(th —c P gBL) +cPgbi (14)

T 144nA
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evolution laws for the internal variables:

o1 O
A=3h df ‘ (15)
P
\4 )
i=td, (16)
if v |
oF % OF .
= — s am 0
F=0 and P st +377 > (17)
then
. ()
(%) v o .
di=0 and di=2X(t —c P gB}) (19)
with v 2
1 i _ D afl k__?k_'
A= —Snkz{z(tk cPgbi) ti 57 T} 7 (20)
if v
dF . O8F .
_ 9 4 +% T<o0
F=0 and 3o s +55T < (21)
or
F<0 (22)
then
. ()
d‘,f - d‘k
A =0 (23)
v
B = 0

Within the developed frame the elasto-viscoplastic behavior is governed by the scalar mate-
rial functions ¢(s%, T, 4,8%), ¥*(A,T), g(sh, A, T, BL), (AT, BL), and n(A,T, Bi). These material
functions can be determined from a series of monotonic and cyclic processes with proportional and
nonproportional paths at different temperature levels 11,

Formulation and Solution Schemes

The rate form of the constitutive equations suggests that a rate approach be taken toward the
entire problem so that flow is viewed as history dependent process rather than an event. For this
purpose, a complete true ab-initio rate theory of kinematics and kinetics for continuum and curved
thin structures, without any restriction on the magnitude of the transformation was presented in
Ref. 11. It is implemented with respect to a body- fixed system of convected coordinates, and
it is valid for finite strains and finite rotations. The time dependence and large strain behavior
are incorporated through the introduction of the time rates of change of the metric and of the

curvature.
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A nonlinear, thermodynamic theory of shells was derived in ref. 11 from three dimensional
continuum mechanics in a natural and comprehensive way. All the approximations had been thrown
into a postulated two dimensional form of the first law of thermodynamics.

The derived shell theory, in the least restricted form, before any simplifying assumptions are
imposed, has the following desirable features:

(a) The two-dimensional, impulse-integral form of the equations of motions and the Second Law of
Thermodynamics (Clausius- Duhem inequality) for a shell follow naturally and exactly from
their three-dimensional counterparts.

(b) Unique and concrete definitions of shell variables such as stress resultaﬁts and couples, rate of
deformation, spin and entropy resultants can be obtained in terms of weighted integrals of
the three-dimensional quantities through the thickness.

(c) There are no series expansions in the thickness direction.
(d) There is no need for making use of the Kirchhoff Hypotheses in the kinematics.

(e) All approximations can be postponed until the descretization process of the integral forms of
the First Law of Thermo- dynamics.

(f) A by-product of the descent from three-dimensional theory is that the two-dimensional tem-
perature field (that emerges) is not a through-the-thickness average, but a true point by point
distribution. This is contrary to what one finds in the literature concerning thermal stresses
in the shell.

The obtained complete rate field equations consist of the principles of the rate of the virtual
power and the rate of conservation of energy, of the constitutive relations, and of boundary and
initial conditions. These equations provide a sound basis for the formulation of the adopted finite

element solution procedures.

The quasi-linear nature of the principle of the rate of virtual power suggests the adoption of an
incremental approach to numerical integration with respect to time. The availability of the field
formulation provides assurance of the completeness of the incremental equations and allows the use
of any convenient procedure for spatial integration over the domain V. In the present instance, the
choice has been made in favor of a simple expansion in time for the construction of incremental
solutions from the results of finite element spatial integration of the governing equations.

The procedure employed permits the rates of the field formulation to be interpreted as incre-
ments in the numerical solution. This is particularly convenient for the construction of incremental
boundary condition histories.

To develop geometrically nonlinear, doubly curved finite shell elements the basic equations of
nonlinear shell theories have to be transferred into the finite element model. As these equations
in general are written in tensor notation, their implementation into the finite element matrix
formulation re- quires considerable effort. The nonlinear element matrices are directly derived
from the incrementally formulated nonlinear shell equations, by using a tensor-oriented procedure.
For this formulation, we use the "natural” degrees of freedom per mid-surface shell node: three
incremental velocities and the rates of rotations about the material coordinates in a mixed form.
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Finite element solution of any boundary-value problem involves the solution of the equilibrium
equations (global) together with the constitutive equations (local). Both sets of equations are solved
simultaneously in a step by step manner. The incremental form of the global and local equations
can be achieved by taking the integration over the incremental time step At = tj41 — tj. The
rectangular rule has been applied to execute the resulting time integration.

Clearly, the numerical solution involves iteration. A simplified version of the Riks-Wempner 14

constant-arc-length method has been utilized. This iteration procedure which is a genera- lization
of the displacement control method also allows to trace the non-linear response beyond bifurcation
points. In contrast to the conventional Newton-Raphson techniques, the iteration of the method
takes place in the velocity and load rate space. The load step of the first solution in each increment
is limited by controlling the length ds of the tangent. Either the length is kept constant in each
step or it is adapted to the characteris- tics of the solution. In each step the triangular-size stiffness
matrix has to be checked for negative diagonal terms, indicating that a critical point is reached.

Applications

Two different material representing different sensitivity to creep and high temperature were
chosen for the numerical experimitations.

The first is the carbon steel C-45 (DIN 1720) with E = 107 psi, » = 0.3 and oy = 2.7 X 10* psi
at room temperature. The viscoplastic properties (the scalar. material functions) were obtained in
Ref. 11. The C-45 has low resistance to temperature and high strain rate sensitivity. The second is
Hastelloy-X a nickel-base alloy used for burner-liner parts, turbine-exhaust weldments, afterburner
parts, and other parts requiring high resistance to temperature effects. Material properties used
for Hastelloy-X were based on data from Refs. 15 and 16.

The first example is of hinged spherical cap made of C-45 carbon steel and loaded by a con-
centrated force at the appex (Fig. 1). The hypothetical elastic response is shown in Fig. 2 by the
dash line. The true behavior for our material is elasto-viscoplastic, the full curve in Fig. 2. Note
that this curve represents quasi-static (steady state) elasto-viscoplastic response, as described by
the constitutive law. According to this, snapping occurs at a load of 32.3 lbs, primarily because
of the low yield strenght. Then, the post-limit point behavior seems to be driven by viscoplastic
behavior.

It is expected here that for loads between 4 Ibs and 32.3 lbs (especially for the higher range)
the behavior will be a combination of creep and snap-through buckling. This is demonstrated by
Fig. 3 for different temperatures. The applied load of 25 1bs is reached quasi-statically and then it
is kept constant. Note the different creep buckling behavior and the differnt critical time to creep

for the different temperatures.

The second example considers a clamped spherical cap subjected to uniform pressure and made
from Hastelloy-X (Fig. 4). Fig. 5 describes the different load deflection curves of the center point
for different temperatures for this example. The critical creep collapse time is reduced by 45

In the next example (Fig. 7) the central deflection time history and the influence of temperature
change of a thin, imperfect, cylind- rical shell panel made of carbon steel C-45 is shown. The panel
(Fig. 6) is simply supported on all sides, and subjected to inplane loads along the generator. The
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applied load of 20 lbs/in is well below the linear critical (buckling) load for this geometry, which
is 42.15 lbs/in. At a temperature of 50x F the shell is in a primary creep state for the first 28
minutes, reaching a deflection of 0.2 in. and the critical time for creep buckling (this implies that
the deflection becomes unbounded) is 35 minutes. At temperature of 500x F the shell ’maps’ into
its post-buckled configuration almost immediately but the critical time for creep buckling remains
almost unchanged. The dashed line in the figure represents a non-isothermal process where the
temperature was suddenly increased from 50x F to 500x F after 0.3 hrs. As a result the shell
snaps-through to its post buckled position at 500x F with small over-shoot and reaches its critical
time of creep buckling two minutes sooner (33 min.).

The last example is of shallow cylindrical panel made from Hastelloy-X and subjected to a
concentrated force at the center of the panel (Fig. 8). Fig. 9 shows the deflection time history of
points 1 and 2 to P = 0.6Py which was kept constant.

Discussion

The study shows that in the presence of high temperature and viscoplasticity, the process
of shell buckling assume an entirely new character. While the stability phenomena still exist
under sufficiently large loads, buckling develops, as a time and temperature dependent deformation
process under constant or variable thermomechanical loads of magnitude smaller than the purely
elastic critical values. If the elastic behavior of a structure displays limit points and snap-through
phenomena, the deformation process of creep buckling: become even more compli- cated and it
usually exhibits a combination of snapping and creep respcnses.
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